亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-intrusive load monitoring (NILM) identifies the status and power consumption of various household appliances by disaggregating the total power usage signal of an entire house. Efficient and accurate load monitoring facilitates user profile establishment, intelligent household energy management, and peak load shifting. This is beneficial for both the end-users and utilities by improving the overall efficiency of a power distribution network. Existing approaches mainly focus on developing an individual model for each appliance. Those approaches typically rely on a large amount of household-labeled data which is hard to collect. In this paper, we propose a multi-appliance-task framework with a training-efficient sample augmentation (SA) scheme that boosts the disaggregation performance with limited labeled data. For each appliance, we develop a shared-hierarchical split structure for its regression and classification tasks. In addition, we also propose a two-dimensional attention mechanism in order to capture spatio-temporal correlations among all appliances. With only one-day training data and limited appliance operation profiles, the proposed SA algorithm can achieve comparable test performance to the case of training with the full dataset. Finally, simulation results show that our proposed approach features a significantly improved performance over many baseline models. The relative errors can be reduced by more than 50\% on average. The codes of this work are available at //github.com/jxiong22/MATNilm

相關內容

End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations, or technical terms that are not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI's Whisper model that performs keyword-spotting (KWS) before the decoder. The KWS module leverages text-to-speech (TTS) techniques and a convolutional neural network (CNN) classifier to match the features between the entities and the utterances. Experiments demonstrate that by incorporating predicted entities into a carefully designed spoken form prompt, the mixed-error-rate (MER) and entity recall of the Whisper model is significantly improved on three internal datasets and two open-sourced datasets that cover English-only, Chinese-only, and code-switching scenarios.

Achieving accurate, efficient, and consistent localization within an a priori environment map remains a fundamental challenge in robotics and computer vision. Conventional map-based keyframe localization often suffers from sub-optimal viewpoints due to limited field of view (FOV), thus degrading its performance. To address this issue, in this paper, we design a real-time tightly-coupled Neural Radiance Fields (NeRF)-aided visual-inertial navigation system (VINS), termed NeRF-VINS. By effectively leveraging NeRF's potential to synthesize novel views, essential for addressing limited viewpoints, the proposed NeRF-VINS optimally fuses IMU and monocular image measurements along with synthetically rendered images within an efficient filter-based framework. This tightly coupled integration enables 3D motion tracking with bounded error. We extensively compare the proposed NeRF-VINS against the state-of-the-art methods that use prior map information, which is shown to achieve superior performance. We also demonstrate the proposed method is able to perform real-time estimation at 15 Hz, on a resource-constrained Jetson AGX Orin embedded platform with impressive accuracy.

Empirical risk minimization (ERM) of neural networks is prone to over-reliance on spurious correlations and poor generalization on minority groups. The recent deep feature reweighting (DFR) technique achieves state-of-the-art group robustness via simple last-layer retraining, but it requires held-out group and class annotations to construct a group-balanced reweighting dataset. In this work, we examine this impractical requirement and find that last-layer retraining can be surprisingly effective with no group annotations (other than for model selection) and only a handful of class annotations. We first show that last-layer retraining can greatly improve worst-group accuracy even when the reweighting dataset has only a small proportion of worst-group data. This implies a "free lunch" where holding out a subset of training data to retrain the last layer can substantially outperform ERM on the entire dataset with no additional data or annotations. To further improve group robustness, we introduce a lightweight method called selective last-layer finetuning (SELF), which constructs the reweighting dataset using misclassifications or disagreements. Our empirical and theoretical results present the first evidence that model disagreement upsamples worst-group data, enabling SELF to nearly match DFR on four well-established benchmarks across vision and language tasks with no group annotations and less than 3% of the held-out class annotations. Our code is available at //github.com/tmlabonte/last-layer-retraining.

Global place recognition and 3D relocalization are one of the most important components in the loop closing detection for 3D LiDAR Simultaneous Localization and Mapping (SLAM). In order to find the accurate global 6-DoF transform by feature matching approach, various end-to-end architectures have been proposed. However, existing methods do not consider the false correspondence of the features, thereby unnecessary features are also involved in global place recognition and relocalization. In this paper, we introduce a robust correspondence estimation method by removing unnecessary features and highlighting necessary features simultaneously. To focus on the necessary features and ignore the unnecessary ones, we use the geometric correlation between two scenes represented in the 3D LiDAR point clouds. We introduce the correspondence auxiliary loss that finds key correlations based on the point align algorithm and enables end-to-end training of the proposed networks with robust correspondence estimation. Since the ground with many plane patches acts as an outlier during correspondence estimation, we also propose a preprocessing step to consider negative correspondence by removing dominant plane patches. The evaluation results on the dynamic urban driving dataset, show that our proposed method can improve the performances of both global place recognition and relocalization tasks. We show that estimating the robust feature correspondence is one of the important factors in place recognition and relocalization.

Non-autoregressive (non-AR) sequence-to-seqeunce (seq2seq) models for voice conversion (VC) is attractive in its ability to effectively model the temporal structure while enjoying boosted intelligibility and fast inference thanks to non-AR modeling. However, the dependency of current non-AR seq2seq VC models on ground truth durations extracted from an external AR model greatly limits its generalization ability to smaller training datasets. In this paper, we first demonstrate the above-mentioned problem by varying the training data size. Then, we present AAS-VC, a non-AR seq2seq VC model based on automatic alignment search (AAS), which removes the dependency on external durations and serves as a proper inductive bias to provide the required generalization ability for small datasets. Experimental results show that AAS-VC can generalize better to a training dataset of only 5 minutes. We also conducted ablation studies to justify several model design choices. The audio samples and implementation are available online.

The parallel alternating direction method of multipliers (ADMM) algorithms have gained popularity in statistics and machine learning for their efficient handling of large sample data problems. However, the parallel structure of these algorithms is based on the consensus problem, which can lead to an excessive number of auxiliary variables for high-dimensional data. In this paper, we propose a partition-insensitive parallel framework based on the linearized ADMM (LADMM) algorithm and apply it to solve nonconvex penalized smooth quantile regression problems. Compared to existing parallel ADMM algorithms, our algorithm does not rely on the consensus problem, resulting in a significant reduction in the number of variables that need to be updated at each iteration. It is worth noting that the solution of our algorithm remains unchanged regardless of how the total sample is divided, which is also known as partition-insensitivity. Furthermore, under some mild assumptions, we prove that the iterative sequence generated by the parallel LADMM algorithm converges to a critical point of the nonconvex optimization problem. Numerical experiments on synthetic and real datasets demonstrate the feasibility and validity of the proposed algorithm.

We propose a simple but effective modular approach MOPA (Modular ObjectNav with PointGoal agents) to systematically investigate the inherent modularity of the object navigation task in Embodied AI. MOPA consists of four modules: (a) an object detection module trained to identify objects from RGB images, (b) a map building module to build a semantic map of the observed objects, (c) an exploration module enabling the agent to explore the environment, and (d) a navigation module to move to identified target objects. We show that we can effectively reuse a pretrained PointGoal agent as the navigation model instead of learning to navigate from scratch, thus saving time and compute. We also compare various exploration strategies for MOPA and find that a simple uniform strategy significantly outperforms more advanced exploration methods.

We introduce a new debiasing framework for high-dimensional linear regression that bypasses the restrictions on covariate distributions imposed by modern debiasing technology. We study the prevalent setting where the number of features and samples are both large and comparable. In this context, state-of-the-art debiasing technology uses a degrees-of-freedom correction to remove shrinkage bias of regularized estimators and conduct inference. However, this method requires that the observed samples are i.i.d., the covariates follow a mean zero Gaussian distribution, and reliable covariance matrix estimates for observed features are available. This approach struggles when (i) covariates are non-Gaussian with heavy tails or asymmetric distributions, (ii) rows of the design exhibit heterogeneity or dependencies, and (iii) reliable feature covariance estimates are lacking. To address these, we develop a new strategy where the debiasing correction is a rescaled gradient descent step (suitably initialized) with step size determined by the spectrum of the sample covariance matrix. Unlike prior work, we assume that eigenvectors of this matrix are uniform draws from the orthogonal group. We show this assumption remains valid in diverse situations where traditional debiasing fails, including designs with complex row-column dependencies, heavy tails, asymmetric properties, and latent low-rank structures. We establish asymptotic normality of our proposed estimator (centered and scaled) under various convergence notions. Moreover, we develop a consistent estimator for its asymptotic variance. Lastly, we introduce a debiased Principal Component Regression (PCR) technique using our Spectrum-Aware approach. In varied simulations and real data experiments, we observe that our method outperforms degrees-of-freedom debiasing by a margin.

In the presence of right-censored data with covariates, the conditional Kaplan-Meier estimator (also known as the Beran estimator) consistently estimates the conditional survival function of the random follow-up for the event of interest. However, a necessary condition is the unambiguous knowledge of whether each individual is censored or not, which may be incomplete in practice. We therefore propose a study of the Beran estimator when the censoring indicators are generic random variables and discuss necessary conditions for the efficiency of the Beran estimator. From this, we provide a new estimator for the conditional survival function with missing not at random (MNAR) censoring indicators based on a conditional copula model for the missingness mechanism. In addition to the theoretical results, we illustrate how the estimators work for small samples through a simulation study and show their practical applicability by analyzing synthetic and real data.

The marketplace system connecting demands and supplies has been explored to develop unbiased decision-making in valuing properties. Real estate appraisal serves as one of the high-cost property valuation tasks for financial institutions since it requires domain experts to appraise the estimation based on the corresponding knowledge and the judgment of the market. Existing automated valuation models reducing the subjectivity of domain experts require a large number of transactions for effective evaluation, which is predominantly limited to not only the labeling efforts of transactions but also the generalizability of new developing and rural areas. To learn representations from unlabeled real estate sets, existing self-supervised learning (SSL) for tabular data neglects various important features, and fails to incorporate domain knowledge. In this paper, we propose DoRA, a Domain-based self-supervised learning framework for low-resource Real estate Appraisal. DoRA is pre-trained with an intra-sample geographic prediction as the pretext task based on the metadata of the real estate for equipping the real estate representations with prior domain knowledge. Furthermore, inter-sample contrastive learning is employed to generalize the representations to be robust for limited transactions of downstream tasks. Our benchmark results on three property types of real-world transactions show that DoRA significantly outperforms the SSL baselines for tabular data, the graph-based methods, and the supervised approaches in the few-shot scenarios by at least 7.6% for MAPE, 11.59% for MAE, and 3.34% for HR10%. We expect DoRA to be useful to other financial practitioners with similar marketplace applications who need general models for properties that are newly built and have limited records. The source code is available at //github.com/wwweiwei/DoRA.

北京阿比特科技有限公司