亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc., each of which consists of numerous ad auctions. We study how an advertiser maximizes total conversion (e.g. ad clicks) while satisfying aggregate return-on-investment (ROI) and budget constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally optimize, which individual ad auctions she participates in for each channel, and instead authorizes a channel to procure impressions on her behalf: the advertiser can only utilize two levers on each channel, namely setting a per-channel budget and per-channel target ROI. In this work, we first analyze the effectiveness of each of these levers for solving the advertiser's global multi-channel problem. We show that when an advertiser only optimizes over per-channel ROIs, her total conversion can be arbitrarily worse than what she could have obtained in the global problem. Further, we show that the advertiser can achieve the global optimal conversion when she only optimizes over per-channel budgets. In light of this finding, under a bandit feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions in each channels and how channels procure ads, we present an efficient learning algorithm that produces per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally, we argue that all our results hold for both single-item and multi-item auctions from which channels procure impressions on advertisers' behalf.

相關內容

Despite the advances and ubiquity of digital communication media such as videoconferencing and virtual reality, they remain oblivious to the rich intentions expressed by users. Beyond transmitting audio, videos, and messages, we envision digital communication media as proactive facilitators that can provide unobtrusive assistance to enhance communication and collaboration. Informed by the results of a formative study, we propose three key design concepts to explore the systematic integration of intelligence into communication and collaboration, including the panel substrate, language-based intent recognition, and lightweight interaction techniques. We developed CrossTalk, a videoconferencing system that instantiates these concepts, which was found to enable a more fluid and flexible communication and collaboration experience.

As mobile and smart connectivity continue to grow, malware presents a permanently evolving threat to different types of critical domains such as health, logistics, banking, and community segments. Different types of malware have dynamic behaviors and complicated characteristics that are shared among members of the same malware family. Malware threat intelligence reports play a crucial role in describing and documenting the detected malware, providing a wealth of information regarding its attributes, patterns, and behaviors. There is a large amount of intelligent threat information regarding malware. The ontology allows the systematic organization and categorization of this information to ensure consistency in representing concepts and entities across various sources. In this study, we reviewed and extended an existing malware ontology to cover Android malware. Our extended ontology is called AndMalOnt. It consisted of 13 new classes, 16 object properties, and 31 data properties. Second, we created an Android malware knowledge graph by extracting reports from the MalwareBazaar repository and representing them in AndMalOnt. This involved generating a knowledge graph that encompasses over 2600 malware samples. Our ontology, knowledge graph, and source code are all open-source and accessible via GitHub

Recently, significant advancements have been made in time-series forecasting research, with an increasing focus on analyzing the nature of time-series data, e.g, channel-independence (CI) and channel-dependence (CD), rather than solely focusing on designing sophisticated forecasting models. However, current research has primarily focused on either CI or CD in isolation, and the challenge of effectively combining these two opposing properties to achieve a synergistic effect remains an unresolved issue. In this paper, we carefully examine the opposing properties of CI and CD, and raise a practical question that has not been effectively answered, e.g.,"How to effectively mix the CI and CD properties of time series to achieve better predictive performance?" To answer this question, we propose Mlinear (MIX-Linear), a simple yet effective method based mainly on linear layers. The design philosophy of Mlinear mainly includes two aspects:(1) dynamically tuning the CI and CD properties based on the time semantics of different input time series, and (2) providing deep supervision to adjust the individual performance of the "CI predictor" and "CD predictor". In addition, empirically, we introduce a new loss function that significantly outperforms the widely used mean squared error (MSE) on multiple datasets. Experiments on time-series datasets covering multiple fields and widely used have demonstrated the superiority of our method over PatchTST which is the lateset Transformer-based method in terms of the MSE and MAE metrics on 7 datasets with identical sequence inputs (336 or 512). Specifically, our method significantly outperforms PatchTST with a ratio of 21:3 at 336 sequence length input and 29:10 at 512 sequence length input. Additionally, our approach has a 10 $\times$ efficiency advantage at the unit level, taking into account both training and inference times.

Railway networks have become increasingly important in recent times, especially to move freight and public transportation from road traffic and planes to more environmentally friendly trains. Since expanding the global railway network is time and resource consuming, maximizing the rail capacity on the existing infrastructure is desirable. However, simply running more trains is infeasible as certain constraints enforced by the train control system must be satisfied. The capacity of a network depends (amongst others) on the distance between trains allowed by this safety system. While most signaling systems rely on fixed blocks defined by costly hardware, new specifications provided by the ETCS Hybrid Level 3 (since recently also known as ETCS Level 2 with Hybrid Train Detection) allow the usage of virtual subsections. This additional degree of freedom allows for shorter train following times and, thus, more trains on existing railway tracks. On the other hand, new design tasks arise on which automated methods might be helpful for designers of modern railway networks. However, although first approaches exist that solve design problems arising within ETCS Hybrid Level 3, neither formal descriptions nor results on the computational complexity of the corresponding design tasks exist. In this paper, we fill this gap by providing a formal description of design tasks for the Hybrid Level 3 of the European Train Control System and proofs that these tasks are NP-complete or NP-hard, respectively. By that, we are providing a solid basis for the future development of methods to solve those tasks, which will be integrated into the Munich Train Control Toolkit available at //github.com/cda-tum/mtct.

Multiomics data fusion integrates diverse data modalities, ranging from transcriptomics to proteomics, to gain a comprehensive understanding of biological systems and enhance predictions on outcomes of interest related to disease phenotypes and treatment responses. Cooperative learning, a recently proposed method, unifies the commonly-used fusion approaches, including early and late fusion, and offers a systematic framework for leveraging the shared underlying relationships across omics to strengthen signals. However, the challenge of acquiring large-scale labeled data remains, and there are cases where multiomics data are available but in the absence of annotated labels. To harness the potential of unlabeled multiomcis data, we introduce semi-supervised cooperative learning. By utilizing an "agreement penalty", our method incorporates the additional unlabeled data in the learning process and achieves consistently superior predictive performance on simulated data and a real multiomics study of aging. It offers an effective solution to multiomics data fusion in settings with both labeled and unlabeled data and maximizes the utility of available data resources, with the potential of significantly improving predictive models for diagnostics and therapeutics in an increasingly multiomics world.

Social media offers a unique lens to observe large-scale, spatial-temporal patterns of users reactions toward critical events. However, social media use varies across demographics, with younger users being more prevalent compared to older populations. This difference introduces biases in data representativeness, and analysis based on social media without proper adjustment will lead to overlooking the voices of digitally marginalized communities and inaccurate estimations. This study explores solutions to pinpoint and alleviate the demographic biases in social media analysis through a case study estimating the public sentiment about COVID-19 using Twitter data. We analyzed the pandemic-related Twitter data in the U.S. during 2020-2021 to (1) elucidate the uneven social media usage among demographic groups and the disparities of their sentiments toward COVID-19, (2) construct an adjusted public sentiment measurement based on social media, the Sentiment Adjusted by Demographics (SAD) index, to evaluate the spatiotemporal varying public sentiment toward COVID-19. The results show higher proportions of female and adolescent Twitter users expressing negative emotions to COVID-19. The SAD index unveils that the public sentiment toward COVID-19 was most negative in January and February 2020 and most positive in April 2020. Vermont and Wyoming were the most positive and negative states toward COVID-19.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司