Existing frameworks for probabilistic inference assume the inferential target is the posited statistical model's parameter. In machine learning applications, however, often there is no statistical model, so the quantity of interest is not a model parameter but a statistical functional. In this paper, we develop a generalized inferential model framework for cases when this functional is a risk minimizer or solution to an estimating equation. We construct a data-dependent possibility measure for uncertainty quantification and inference whose computation is based on the bootstrap. We then prove that this new generalized inferential model provides approximately valid inference in the sense that the plausibility values assigned to hypotheses about the unknowns are asymptotically well-calibrated in a frequentist sense. Among other things, this implies that confidence regions for the underlying functional derived from our new generalized inferential model are approximately valid. The method is shown to perform well in classical examples, including quantile regression, and in a personalized medicine application.
We develop a kernel projected Wasserstein distance for the two-sample test, an essential building block in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. This method operates by finding the nonlinear mapping in the data space which maximizes the distance between projected distributions. In contrast to existing works about projected Wasserstein distance, the proposed method circumvents the curse of dimensionality more efficiently. We present practical algorithms for computing this distance function together with the non-asymptotic uncertainty quantification of empirical estimates. Numerical examples validate our theoretical results and demonstrate good performance of the proposed method.
The change in the least squares estimator (LSE) of a vector of regression coefficients due to a case deletion is often used for investigating the influence of an observation on the LSE. A normalization of the change in the LSE using the Moore-Penrose inverse of the covariance matrix of the change in the LSE is derived. This normalization turns out to be a square of the internally studentized residual. It is shown that the numerator term of Cook's distance does not in general have a chi-squared distribution except for a single case. An elaborate explanation about the inappropriateness of the choice of a scaling matrix defining Cook's distance is given. By reflecting a distributional property of the change in the LSE due to a case deletion, a new diagnostic measure that is a scalar is suggested. Three numerical examples are given for illustration.
We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation coming from exponentially distributed "side-observations" of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the rigorous derivation of replica symmetric formulas for the free energy and mutual information in this context.
The subset sum problem is known to be an NP-hard problem in the field of computer science with the fastest known approach having a run-time complexity of $O(2^{0.3113n})$. A modified version of this problem is known as the perfect sum problem and extends the subset sum idea further. This extension results in additional complexity, making it difficult to compute for a large input. In this paper, I propose a probabilistic approach which approximates the solution to the perfect sum problem by approximating the distribution of potential sums. Since this problem is an extension of the subset sum, our approximation also grants some probabilistic insight into the solution for the subset sum problem. We harness distributional approximations to model the number of subsets which sum to a certain size. These distributional approximations are formulated in two ways: using bounds to justify normal approximation, and approximating the empirical distribution via density estimation. These approximations can be computed in $O(n)$ complexity, and can increase in accuracy with the size of the input data making it useful for large-scale combinatorial problems. Code is available at //github.com/KristofPusztai/PerfectSum.
Bayesian nonparametric methods are a popular choice for analysing survival data due to their ability to flexibly model the distribution of survival times. These methods typically employ a nonparametric prior on the survival function that is conjugate with respect to right-censored data. Eliciting these priors, particularly in the presence of covariates, can be challenging and inference typically relies on computationally intensive Markov chain Monte Carlo schemes. In this paper, we build on recent work that recasts Bayesian inference as assigning a predictive distribution on the unseen values of a population conditional on the observed samples, thus avoiding the need to specify a complex prior. We describe a copula-based predictive update which admits a scalable sequential importance sampling algorithm to perform inference that properly accounts for right-censoring. We provide theoretical justification through an extension of Doob's consistency theorem and illustrate the method on a number of simulated and real data sets, including an example with covariates. Our approach enables analysts to perform Bayesian nonparametric inference through only the specification of a predictive distribution.
Bayesian bandit algorithms with approximate inference have been widely used in practice with superior performance. Yet, few studies regarding the fundamental understanding of their performances are available. In this paper, we propose a Bayesian bandit algorithm, which we call Generalized Bayesian Upper Confidence Bound (GBUCB), for bandit problems in the presence of approximate inference. Our theoretical analysis demonstrates that in Bernoulli multi-armed bandit, GBUCB can achieve $O(\sqrt{T}(\log T)^c)$ frequentist regret if the inference error measured by symmetrized Kullback-Leibler divergence is controllable. This analysis relies on a novel sensitivity analysis for quantile shifts with respect to inference errors. To our best knowledge, our work provides the first theoretical regret bound that is better than $o(T)$ in the setting of approximate inference. Our experimental evaluations on multiple approximate inference settings corroborate our theory, showing that our GBUCB is consistently superior to BUCB and Thompson sampling.
The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.
Ensemble methods based on subsampling, such as random forests, are popular in applications due to their high predictive accuracy. Existing literature views a random forest prediction as an infinite-order incomplete U-statistic to quantify its uncertainty. However, these methods focus on a small subsampling size of each tree, which is theoretically valid but practically limited. This paper develops an unbiased variance estimator based on incomplete U-statistics, which allows the tree size to be comparable with the overall sample size, making statistical inference possible in a broader range of real applications. Simulation results demonstrate that our estimators enjoy lower bias and more accurate confidence interval coverage without additional computational costs. We also propose a local smoothing procedure to reduce the variation of our estimator, which shows improved numerical performance when the number of trees is relatively small. Further, we investigate the ratio consistency of our proposed variance estimator under specific scenarios. In particular, we develop a new "double U-statistic" formulation to analyze the Hoeffding decomposition of the estimator's variance.
Dyadic data is often encountered when quantities of interest are associated with the edges of a network. As such it plays an important role in statistics, econometrics and many other data science disciplines. We consider the problem of uniformly estimating a dyadic Lebesgue density function, focusing on nonparametric kernel-based estimators taking the form of dyadic empirical processes. Our main contributions include the minimax-optimal uniform convergence rate of the dyadic kernel density estimator, along with strong approximation results for the associated standardized and Studentized $t$-processes. A consistent variance estimator enables the construction of valid and feasible uniform confidence bands for the unknown density function. A crucial feature of dyadic distributions is that they may be "degenerate" at certain points in the support of the data, a property making our analysis somewhat delicate. Nonetheless our methods for uniform inference remain robust to the potential presence of such points. For implementation purposes, we discuss procedures based on positive semi-definite covariance estimators, mean squared error optimal bandwidth selectors and robust bias-correction techniques. We illustrate the empirical finite-sample performance of our methods both in simulations and with real-world data. Our technical results concerning strong approximations and maximal inequalities are of potential independent interest.
We consider Ising models on the hypercube with a general interaction matrix $J$, and give a polynomial time sampling algorithm when all but $O(1)$ eigenvalues of $J$ lie in an interval of length one, a situation which occurs in many models of interest. This was previously known for the Glauber dynamics when *all* eigenvalues fit in an interval of length one; however, a single outlier can force the Glauber dynamics to mix torpidly. Our general result implies the first polynomial time sampling algorithms for low-rank Ising models such as Hopfield networks with a fixed number of patterns and Bayesian clustering models with low-dimensional contexts, and greatly improves the polynomial time sampling regime for the antiferromagnetic/ferromagnetic Ising model with inconsistent field on expander graphs. It also improves on previous approximation algorithm results based on the naive mean-field approximation in variational methods and statistical physics. Our approach is based on a new fusion of ideas from the MCMC and variational inference worlds. As part of our algorithm, we define a new nonconvex variational problem which allows us to sample from an exponential reweighting of a distribution by a negative definite quadratic form, and show how to make this procedure provably efficient using stochastic gradient descent. On top of this, we construct a new simulated tempering chain (on an extended state space arising from the Hubbard-Stratonovich transform) which overcomes the obstacle posed by large positive eigenvalues, and combine it with the SGD-based sampler to solve the full problem.