Adversarial Robustness is a growing field that evidences the brittleness of neural networks. Although the literature on adversarial robustness is vast, a dimension is missing in these studies: assessing how severe the mistakes are. We call this notion "Adversarial Severity" since it quantifies the downstream impact of adversarial corruptions by computing the semantic error between the misclassification and the proper label. We propose to study the effects of adversarial noise by measuring the Robustness and Severity into a large-scale dataset: iNaturalist-H. Our contributions are: (i) we introduce novel Hierarchical Attacks that harness the rich structured space of labels to create adversarial examples. (ii) These attacks allow us to benchmark the Adversarial Robustness and Severity of classification models. (iii) We enhance the traditional adversarial training with a simple yet effective Hierarchical Curriculum Training to learn these nodes gradually within the hierarchical tree. We perform extensive experiments showing that hierarchical defenses allow deep models to boost the adversarial Robustness by 1.85% and reduce the severity of all attacks by 0.17, on average.
Classification of time series is a growing problem in different disciplines due to the progressive digitalization of the world. Currently, the state-of-the-art in time series classification is dominated by The Hierarchical Vote Collective of Transformation-based Ensembles. This algorithm is composed of several classifiers of different domains distributed in five large modules. The combination of the results obtained by each module weighed based on an internal evaluation process allows this algorithm to obtain the best results in state-of-the-art. One Nearest Neighbour with Dynamic Time Warping remains the base classifier in any time series classification problem for its simplicity and good results. Despite their performance, they share a weakness, which is that they are not interpretable. In the field of time series classification, there is a tradeoff between accuracy and interpretability. In this work, we propose a set of characteristics capable of extracting information on the structure of the time series to face time series classification problems. The use of these characteristics allows the use of traditional classification algorithms in time series problems. The experimental results of our proposal show no statistically significant differences from the second and third best models of the state-of-the-art. Apart from competitive results in accuracy, our proposal is able to offer interpretable results based on the set of characteristics proposed
Generative adversarial networks (GANs) with clustered latent spaces can perform conditional generation in a completely unsupervised manner. In the real world, the salient attributes of unlabeled data can be imbalanced. However, existing unsupervised conditional GANs cannot cluster attributes of these data in their latent spaces properly because they assume uniform distributions of the attributes. To address this problem, we theoretically derive Stein latent optimization that provides reparameterizable gradient estimations of the latent distribution parameters assuming a Gaussian mixture prior in a continuous latent space. Structurally, we introduce an encoder network and novel unsupervised conditional contrastive loss to ensure that data generated from a single mixture component represent a single attribute. We confirm that the proposed method, named Stein Latent Optimization for GANs (SLOGAN), successfully learns balanced or imbalanced attributes and achieves state-of-the-art unsupervised conditional generation performance even in the absence of attribute information (e.g., the imbalance ratio). Moreover, we demonstrate that the attributes to be learned can be manipulated using a small amount of probe data.
Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). This observation also holds for certified robustness. We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations.
The vulnerability of deep neural networks to adversarial examples has motivated an increasing number of defense strategies for promoting model robustness. However, the progress is usually hampered by insufficient robustness evaluations. As the de facto standard to evaluate adversarial robustness, adversarial attacks typically solve an optimization problem of crafting adversarial examples with an iterative process. In this work, we propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically. Our method learns the optimizer in adversarial attacks parameterized by a recurrent neural network, which is trained over a class of data samples and defenses to produce effective update directions during adversarial example generation. Furthermore, we develop a model-agnostic training algorithm to improve the generalization ability of the learned optimizer when attacking unseen defenses. Our approach can be flexibly incorporated with various attacks and consistently improves the performance with little extra computational cost. Extensive experiments demonstrate the effectiveness of the learned attacks by MAMA compared to the state-of-the-art attacks on different defenses, leading to a more reliable evaluation of adversarial robustness.
Adversarial training is an approach of increasing the robustness of models to adversarial attacks by including adversarial examples in the training set. One major challenge of producing adversarial examples is to contain sufficient perturbation in the example to flip the model's output while not making severe changes in the example's semantical content. Exuberant change in the semantical content could also change the true label of the example. Adding such examples to the training set results in adverse effects. In this paper, we present the Calibrated Adversarial Training, a method that reduces the adverse effects of semantic perturbations in adversarial training. The method produces pixel-level adaptations to the perturbations based on novel calibrated robust error. We provide theoretical analysis on the calibrated robust error and derive an upper bound for it. Our empirical results show a superior performance of the Calibrated Adversarial Training over a number of public datasets.
Multiple intriguing problems are hovering in adversarial training, including robust overfitting, robustness overestimation, and robustness-accuracy trade-off. These problems pose great challenges to both reliable evaluation and practical deployment. Here, we empirically show that these problems share one common cause -- low-quality samples in the dataset. Specifically, we first propose a strategy to measure the data quality based on the learning behaviors of the data during adversarial training and find that low-quality data may not be useful and even detrimental to the adversarial robustness. We then design controlled experiments to investigate the interconnections between data quality and problems in adversarial training. We find that when low-quality data is removed, robust overfitting and robustness overestimation can be largely alleviated; and robustness-accuracy trade-off becomes less significant. These observations not only verify our intuition about data quality but may also open new opportunities to advance adversarial training.
Model quantization is a promising approach to compress deep neural networks and accelerate inference, making it possible to be deployed on mobile and edge devices. To retain the high performance of full-precision models, most existing quantization methods focus on fine-tuning quantized model by assuming training datasets are accessible. However, this assumption sometimes is not satisfied in real situations due to data privacy and security issues, thereby making these quantization methods not applicable. To achieve zero-short model quantization without accessing training data, a tiny number of quantization methods adopt either post-training quantization or batch normalization statistics-guided data generation for fine-tuning. However, both of them inevitably suffer from low performance, since the former is a little too empirical and lacks training support for ultra-low precision quantization, while the latter could not fully restore the peculiarities of original data and is often low efficient for diverse data generation. To address the above issues, we propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer from a full-precision model to its quantized model. This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples to optimize the quantized model in an adversarial learning fashion. We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines and validating the effectiveness of its main components. Code is available at <//git.io/Jqc0y>.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.