亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they result in less accurate statistics that offer lower utility to the recipients. Of particular interest are therefore optimal mechanisms that provide the highest accuracy for a pre-selected level of privacy. To date, work in this area has focused on specifying families of perturbations a priori and subsequently proving their asymptotic and/or best-in-class optimality. In this paper, we develop a class of mechanisms that enjoy non-asymptotic and unconditional optimality guarantees. To this end, we formulate the mechanism design problem as an infinite-dimensional distributionally robust optimization problem. We show that the problem affords a strong dual, and we exploit this duality to develop converging hierarchies of finite-dimensional upper and lower bounding problems. Our upper (primal) bounds correspond to implementable perturbations whose suboptimality can be bounded by our lower (dual) bounds. Both bounding problems can be solved within seconds via cutting plane techniques that exploit the inherent problem structure. Our numerical experiments demonstrate that our perturbations can outperform the previously best results from the literature on artificial as well as standard benchmark problems.

相關內容

We consider a distributionally robust stochastic optimization problem and formulate it as a stochastic two-level composition optimization problem with the use of the mean--semideviation risk measure. In this setting, we consider a single time-scale algorithm, involving two versions of the inner function value tracking: linearized tracking of a continuously differentiable loss function, and SPIDER tracking of a weakly convex loss function. We adopt the norm of the gradient of the Moreau envelope as our measure of stationarity and show that the sample complexity of $\mathcal{O}(\varepsilon^{-3})$ is possible in both cases, with only the constant larger in the second case. Finally, we demonstrate the performance of our algorithm with a robust learning example and a weakly convex, non-smooth regression example.

This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as $\texttt{ROBIN}$ and show that it is near-optimal in terms of the number of clients $M$ and the privacy budget $\varepsilon$ by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level $(\varepsilon,\delta)$-LDP must suffer a regret blow-up factor at least $\min\{1/\varepsilon,M\}$ or $\min\{1/\sqrt{\varepsilon},\sqrt{M}\}$ under different conditions.

The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional hierarchical B-spline computational domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.

Given a collection of vectors $x^{(1)},\dots,x^{(n)} \in \{0,1\}^d$, the selection problem asks to report the index of an "approximately largest" entry in $x=\sum_{j=1}^n x^{(j)}$. Selection abstracts a host of problems--in machine learning it can be used for hyperparameter tuning, feature selection, or to model empirical risk minimization. We study selection under differential privacy, where a released index guarantees privacy for each vectors. Though selection can be solved with an excellent utility guarantee in the central model of differential privacy, the distributed setting lacks solutions. Specifically, strong privacy guarantees with high utility are offered in high trust settings, but not in low trust settings. For example, in the popular shuffle model of distributed differential privacy, there are strong lower bounds suggesting that the utility of the central model cannot be obtained. In this paper we design a protocol for differentially private selection in a trust setting similar to the shuffle model--with the crucial difference that our protocol tolerates corrupted servers while maintaining privacy. Our protocol uses techniques from secure multi-party computation (MPC) to implement a protocol that: (i) has utility on par with the best mechanisms in the central model, (ii) scales to large, distributed collections of high-dimensional vectors, and (iii) uses $k\geq 3$ servers that collaborate to compute the result, where the differential privacy holds assuming an honest majority. Since general-purpose MPC techniques are not sufficiently scalable, we propose a novel application of integer secret sharing, and evaluate the utility and efficiency of our protocol theoretically and empirically. Our protocol is the first to demonstrate that large-scale differentially private selection is possible in a distributed setting.

This work addresses the problem of revenue maximization in a repeated, unlimited supply item-pricing auction while preserving buyer privacy. We present a novel algorithm that provides differential privacy with respect to the buyer's input pair: item selection and bid. Notably, our algorithm is the first to offer a sublinear $O(\sqrt{T}\log{T})$ regret with a privacy guarantee. Our method is based on an exponential weights meta-algorithm, and we mitigate the issue of discontinuities in revenue functions via small random perturbations. As a result of its structural similarity to the exponential mechanism, our method inherently secures differential privacy. We also extend our algorithm to accommodate scenarios where buyers strategically bid over successive rounds. The inherent differential privacy allows us to adapt our algorithm with minimal modification to ensure a sublinear regret in this setting.

The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high.

Given a collection of vectors $x^{(1)},\dots,x^{(n)} \in \{0,1\}^d$, the selection problem asks to report the index of an "approximately largest" entry in $x=\sum_{j=1}^n x^{(j)}$. Selection abstracts a host of problems--in machine learning it can be used for hyperparameter tuning, feature selection, or to model empirical risk minimization. We study selection under differential privacy, where a released index guarantees privacy for each vectors. Though selection can be solved with an excellent utility guarantee in the central model of differential privacy, the distributed setting lacks solutions. Specifically, strong privacy guarantees with high utility are offered in high trust settings, but not in low trust settings. For example, in the popular shuffle model of distributed differential privacy, there are strong lower bounds suggesting that the utility of the central model cannot be obtained. In this paper we design a protocol for differentially private selection in a trust setting similar to the shuffle model--with the crucial difference that our protocol tolerates corrupted servers while maintaining privacy. Our protocol uses techniques from secure multi-party computation (MPC) to implement a protocol that: (i) has utility on par with the best mechanisms in the central model, (ii) scales to large, distributed collections of high-dimensional vectors, and (iii) uses $k\geq 3$ servers that collaborate to compute the result, where the differential privacy holds assuming an honest majority. Since general-purpose MPC techniques are not sufficiently scalable, we propose a novel application of integer secret sharing, and evaluate the utility and efficiency of our protocol theoretically and empirically. Our protocol is the first to demonstrate that large-scale differentially private selection is possible in a distributed setting.

We propose a novel Bayesian inference framework for distributed differentially private linear regression. We consider a distributed setting where multiple parties hold parts of the data and share certain summary statistics of their portions in privacy-preserving noise. We develop a novel generative statistical model for privately shared statistics, which exploits a useful distributional relation between the summary statistics of linear regression. Bayesian estimation of the regression coefficients is conducted mainly using Markov chain Monte Carlo algorithms, while we also provide a fast version to perform Bayesian estimation in one iteration. The proposed methods have computational advantages over their competitors. We provide numerical results on both real and simulated data, which demonstrate that the proposed algorithms provide well-rounded estimation and prediction.

A parametric class of trust-region algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of (possibly approximate) second-order information when available. The rate of convergence of methods in the class is analyzed and is shown to be identical to that known for first-order optimization methods using both function and gradients values, recovering existing results for purely-first order variants and improving the explicit dependence on problem dimension. This rate is shown to be essentially sharp. A new class of methods is also presented, for which a slightly worse and essentially sharp complexity result holds. Limited numerical experiments show that the new methods' performance may be comparable to that of standard steepest descent, despite using significantly less information, and that this performance is relatively insensitive to noise.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司