亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fully implicit Runge-Kutta (IRK) methods have many desirable accuracy and stability properties as time integration schemes, but high-order IRK methods are not commonly used in practice with large-scale numerical PDEs because of the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic framework for solving the nonlinear equations that arise from IRK methods (and discontinuous Galerkin discretizations in time) applied to nonlinear numerical PDEs, including PDEs with algebraic constraints. Several new linearizations of the nonlinear IRK equations are developed, offering faster and more robust convergence than the often-considered simplified Newton, as well as an effective preconditioner for the true Jacobian if exact Newton iterations are desired. Inverting these linearizations requires solving a set of block 2x2 systems. Under quite general assumptions, it is proven that the preconditioned 2x2 operator's condition number is bounded by a small constant close to one, independent of the spatial discretization, spatial mesh, and time step, and with only weak dependence on the number of stages or integration accuracy. Moreover, the new method is built using the same preconditioners needed for backward Euler-type time stepping schemes, so can be readily added to existing codes. The new methods are applied to several challenging fluid flow problems, including the compressible Euler and Navier Stokes equations, and the vorticity-streamfunction formulation of the incompressible Euler and Navier Stokes equations. Up to 10th-order accuracy is demonstrated using Gauss IRK, while in all cases 4th-order Gauss IRK requires roughly half the number of preconditioner applications as required by standard SDIRK methods.

相關內容

機器學習系統設計系統評估標準

In this paper we study the finite element approximation of systems of second-order nonlinear hyperbolic equations. The proposed numerical method combines a $hp$-version discontinuous Galerkin finite element approximation in the time direction with an $H^1(\Omega)$-conforming finite element approximation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are presented to verify the theoretical results.

The Sinc-Nystr\"{o}m method is a high-order numerical method based on Sinc basis functions for discretizing evolutionary differential equations in time. But in this method we have to solve all the time steps in one-shot (i.e. all-at-once), which results in a large-scale nonsymmetric dense system that is expensive to handle. In this paper, we propose and analyze preconditioner for such dense system arising from both the parabolic and hyperbolic PDEs. The proposed preconditioner is a low-rank perturbation of the original matrix and has two advantages. First, we show that the eigenvalues of the preconditioned system are highly clustered with some uniform bounds which are independent of the mesh parameters. Second, the preconditioner can be used parallel for all the Sinc time points via a block diagonalization procedure. Such a parallel potential owes to the fact that the eigenvector matrix of the diagonalization is well conditioned. In particular, we show that the condition number of the eigenvector matrix only mildly grows as the number of Sinc time points increases, and thus the roundoff error arising from the diagonalization procedure is controllable. The effectiveness of our proposed PinT preconditioners is verified by the observed mesh-independent convergence rates of the preconditioned GMRES in reported numerical examples.

We consider a generic and explicit tamed Euler--Maruyama scheme for multidimensional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise. The diffusion coefficient is uniformly elliptic, H\"older continuous and weakly differentiable in the spatial variables while the drift satisfies the Ladyzhenskaya--Prodi--Serrin condition, as considered by Krylov and R\"ockner (2005). In the discrete scheme, the drift is tamed by replacing it by an approximation. A strong rate of convergence of the scheme is provided in terms of the approximation error of the drift in a suitable and possibly very weak topology. A few examples of approximating drifts are discussed in detail. The parameters of the approximating drifts can vary and be fine-tuned to achieve the standard $1/2$-strong convergence rate with a logarithmic factor.

Two types of second-order in time partial differential equations (PDEs), namely semilinear wave equations and semilinear beam equations are considered. To solve these equations with exponential integrators, we present an approach to compute efficiently the action of the matrix exponential as well as those of related matrix functions. Various numerical simulations are presented that illustrate this approach.

The aim of this paper is to apply a high-order discontinuous-in-time scheme to second-order hyperbolic partial differential equations (PDEs). We first discretize the PDEs in time while keeping the spatial differential operators undiscretized. The well-posedness of this semi-discrete scheme is analyzed and a priori error estimates are derived in the energy norm. We then combine this $hp$-version discontinuous Galerkin method for temporal discretization with an $H^1$-conforming finite element approximation for the spatial variables to construct a fully discrete scheme. A prior error estimates are derived both in the energy norm and the $L^2$-norm. Numerical experiments are presented to verify the theoretical results.

We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems (Habets, 1974) to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization. We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.

In this paper, we study the numerical method for approximating the random periodic solution of a semiliear stochastic evolution equation with an additive noise. The main challenge lies in proving a convergence over an infinite time horizon while simulating infinite-dimensional objects. We propose a Galerkin-type exponential integrator scheme and establish its convergence rate of the strong error to the mild solution.

We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.

We develop a rapid and accurate contour method for the solution of time-fractional PDEs. The method inverts the Laplace transform via an optimised stable quadrature rule, suitable for infinite-dimensional operators, whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points. The method is parallisable, avoids having to resolve singularities of the solution as $t\downarrow 0$, and avoids the large memory consumption that can be a challenge for time-stepping methods applied to time-fractional PDEs. The ODEs resulting from quadrature are solved using adaptive sparse spectral methods that converge exponentially with optimal linear complexity. These solutions of ODEs are reused for different times. We provide a complete analysis of our approach for fractional beam equations used to model small-amplitude vibration of viscoelastic materials with a fractional Kelvin-Voigt stress-strain relationship. We calculate the system's energy evolution over time and the surface deformation in cases of both constant and non-constant viscoelastic parameters. An infinite-dimensional ``solve-then-discretise'' approach considerably simplifies the analysis, which studies the generalisation of the numerical range of a quasi-linearisation of a suitable operator pencil. This allows us to build an efficient algorithm with explicit error control. The approach can be readily adapted to other time-fractional PDEs and is not constrained to fractional parameters in the range $0<\nu<1$.

In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.

北京阿比特科技有限公司