This paper introduces a new data-driven, non-parametric method for image quality and aesthetics assessment, surpassing existing approaches and requiring no prompt engineering or fine-tuning. We eliminate the need for expressive textual embeddings by proposing efficient image anchors in the data. Through extensive evaluations of 7 state-of-the-art self-supervised models, our method demonstrates superior performance and robustness across various datasets and benchmarks. Notably, it achieves high agreement with human assessments even with limited data and shows high robustness to the nature of data and their pre-processing pipeline. Our contributions offer a streamlined solution for assessment of images while providing insights into the perception of visual information.
This paper introduces FlowMap, an end-to-end differentiable method that solves for precise camera poses, camera intrinsics, and per-frame dense depth of a video sequence. Our method performs per-video gradient-descent minimization of a simple least-squares objective that compares the optical flow induced by depth, intrinsics, and poses against correspondences obtained via off-the-shelf optical flow and point tracking. Alongside the use of point tracks to encourage long-term geometric consistency, we introduce differentiable re-parameterizations of depth, intrinsics, and pose that are amenable to first-order optimization. We empirically show that camera parameters and dense depth recovered by our method enable photo-realistic novel view synthesis on 360-degree trajectories using Gaussian Splatting. Our method not only far outperforms prior gradient-descent based bundle adjustment methods, but surprisingly performs on par with COLMAP, the state-of-the-art SfM method, on the downstream task of 360-degree novel view synthesis (even though our method is purely gradient-descent based, fully differentiable, and presents a complete departure from conventional SfM).
This paper constructs an algorithmic framework for adaptively achieving the mechanism design objective, finding a mechanism inducing socially optimal Nash equilibria, without knowledge of the utility functions of the agents. We consider a probing scheme where the designer can iteratively enact mechanisms and observe Nash equilibria responses. We first derive necessary and sufficient conditions, taking the form of linear program feasibility, for the existence of utility functions under which the empirical Nash equilibria responses are socially optimal. Then, we utilize this to construct a loss function with respect to the mechanism, and show that its global minimization occurs at mechanisms under which Nash equilibria system responses are also socially optimal. We develop a simulated annealing-based gradient algorithm, and prove that it converges in probability to this set of global minima, thus achieving adaptive mechanism design.
This paper introduces ReflectSumm, a novel summarization dataset specifically designed for summarizing students' reflective writing. The goal of ReflectSumm is to facilitate developing and evaluating novel summarization techniques tailored to real-world scenarios with little training data, %practical tasks with potential implications in the opinion summarization domain in general and the educational domain in particular. The dataset encompasses a diverse range of summarization tasks and includes comprehensive metadata, enabling the exploration of various research questions and supporting different applications. To showcase its utility, we conducted extensive evaluations using multiple state-of-the-art baselines. The results provide benchmarks for facilitating further research in this area.
This paper describes RETVec, an efficient, resilient, and multilingual text vectorizer designed for neural-based text processing. RETVec combines a novel character encoding with an optional small embedding model to embed words into a 256-dimensional vector space. The RETVec embedding model is pre-trained using pair-wise metric learning to be robust against typos and character-level adversarial attacks. In this paper, we evaluate and compare RETVec to state-of-the-art vectorizers and word embeddings on popular model architectures and datasets. These comparisons demonstrate that RETVec leads to competitive, multilingual models that are significantly more resilient to typos and adversarial text attacks. RETVec is available under the Apache 2 license at //github.com/google-research/retvec.
In this paper, we introduce "Marking", a novel grading task that enhances automated grading systems by performing an in-depth analysis of student responses and providing students with visual highlights. Unlike traditional systems that provide binary scores, "marking" identifies and categorizes segments of the student response as correct, incorrect, or irrelevant and detects omissions from gold answers. We introduce a new dataset meticulously curated by Subject Matter Experts specifically for this task. We frame "Marking" as an extension of the Natural Language Inference (NLI) task, which is extensively explored in the field of Natural Language Processing. The gold answer and the student response play the roles of premise and hypothesis in NLI, respectively. We subsequently train language models to identify entailment, contradiction, and neutrality from student response, akin to NLI, and with the added dimension of identifying omissions from gold answers. Our experimental setup involves the use of transformer models, specifically BERT and RoBERTa, and an intelligent training step using the e-SNLI dataset. We present extensive baseline results highlighting the complexity of the "Marking" task, which sets a clear trajectory for the upcoming study. Our work not only opens up new avenues for research in AI-powered educational assessment tools, but also provides a valuable benchmark for the AI in education community to engage with and improve upon in the future. The code and dataset can be found at //github.com/luffycodes/marking.
Urbanization challenges underscore the necessity for effective satellite image-text retrieval methods to swiftly access specific information enriched with geographic semantics for urban applications. However, existing methods often overlook significant domain gaps across diverse urban landscapes, primarily focusing on enhancing retrieval performance within single domains. To tackle this issue, we present UrbanCross, a new framework for cross-domain satellite image-text retrieval. UrbanCross leverages a high-quality, cross-domain dataset enriched with extensive geo-tags from three countries to highlight domain diversity. It employs the Large Multimodal Model (LMM) for textual refinement and the Segment Anything Model (SAM) for visual augmentation, achieving a fine-grained alignment of images, segments and texts, yielding a 10% improvement in retrieval performance. Additionally, UrbanCross incorporates an adaptive curriculum-based source sampler and a weighted adversarial cross-domain fine-tuning module, progressively enhancing adaptability across various domains. Extensive experiments confirm UrbanCross's superior efficiency in retrieval and adaptation to new urban environments, demonstrating an average performance increase of 15% over its version without domain adaptation mechanisms, effectively bridging the domain gap.
This paper introduces MultiBooth, a novel and efficient technique for multi-concept customization in image generation from text. Despite the significant advancements in customized generation methods, particularly with the success of diffusion models, existing methods often struggle with multi-concept scenarios due to low concept fidelity and high inference cost. MultiBooth addresses these issues by dividing the multi-concept generation process into two phases: a single-concept learning phase and a multi-concept integration phase. During the single-concept learning phase, we employ a multi-modal image encoder and an efficient concept encoding technique to learn a concise and discriminative representation for each concept. In the multi-concept integration phase, we use bounding boxes to define the generation area for each concept within the cross-attention map. This method enables the creation of individual concepts within their specified regions, thereby facilitating the formation of multi-concept images. This strategy not only improves concept fidelity but also reduces additional inference cost. MultiBooth surpasses various baselines in both qualitative and quantitative evaluations, showcasing its superior performance and computational efficiency. Project Page: //multibooth.github.io/
Although diffusion models can generate high-quality human images, their applications are limited by the instability in generating hands with correct structures. Some previous works mitigate the problem by considering hand structure yet struggle to maintain style consistency between refined malformed hands and other image regions. In this paper, we aim to solve the problem of inconsistency regarding hand structure and style. We propose a conditional diffusion-based framework RHanDS to refine the hand region with the help of decoupled structure and style guidance. Specifically, the structure guidance is the hand mesh reconstructed from the malformed hand, serving to correct the hand structure. The style guidance is a hand image, e.g., the malformed hand itself, and is employed to furnish the style reference for hand refining. In order to suppress the structure leakage when referencing hand style and effectively utilize hand data to improve the capability of the model, we build a multi-style hand dataset and introduce a twostage training strategy. In the first stage, we use paired hand images for training to generate hands with the same style as the reference. In the second stage, various hand images generated based on the human mesh are used for training to enable the model to gain control over the hand structure. We evaluate our method and counterparts on the test dataset of the proposed multi-style hand dataset. The experimental results show that RHanDS can effectively refine hands structure- and style- correctly compared with previous methods. The codes and datasets will be available soon.
This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen $\rightarrow$ unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns ($90$ for training and $10$ for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel tamper patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization ($+26.66 \%$ $\mu AP$), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of $+16.75 \%$ $\mu AP$), and (3) AnyPattern enables in-context ICD, i.e. without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. The project (including the proposed dataset AnyPattern and the code for ImageStacker) is publicly available at //anypattern.github.io under the MIT Licence.
Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs. Despite recent progress, existing approaches often fall short in two key aspects: richness of representation and coherence in output structure. These models often rely on handcrafted heuristics for computing entity and relation representations, potentially leading to loss of crucial information. Furthermore, they disregard task and/or dataset-specific constraints, resulting in output structures that lack coherence. In our work, we introduce EnriCo, which mitigates these shortcomings. Firstly, to foster rich and expressive representation, our model leverage attention mechanisms that allow both entities and relations to dynamically determine the pertinent information required for accurate extraction. Secondly, we introduce a series of decoding algorithms designed to infer the highest scoring solutions while adhering to task and dataset-specific constraints, thus promoting structured and coherent outputs. Our model demonstrates competitive performance compared to baselines when evaluated on Joint IE datasets.