亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating unit tests is a crucial task in software development, demanding substantial time and effort from programmers. The advent of Large Language Models (LLMs) introduces a novel avenue for unit test script generation. This research aims to experimentally investigate the effectiveness of LLMs, specifically exemplified by ChatGPT, for generating unit test scripts for Python programs, and how the generated test cases compare with those generated by an existing unit test generator (Pynguin). For experiments, we consider three types of code units: 1) Procedural scripts, 2) Function-based modular code, and 3) Class-based code. The generated test cases are evaluated based on criteria such as coverage, correctness, and readability. Our results show that ChatGPT's performance is comparable with Pynguin in terms of coverage, though for some cases its performance is superior to Pynguin. We also find that about a third of assertions generated by ChatGPT for some categories were incorrect. Our results also show that there is minimal overlap in missed statements between ChatGPT and Pynguin, thus, suggesting that a combination of both tools may enhance unit test generation performance. Finally, in our experiments, prompt engineering improved ChatGPT's performance, achieving a much higher coverage.

相關內容

Addressing the challenge of data scarcity in industrial domains, transfer learning emerges as a pivotal paradigm. This work introduces Style Filter, a tailored methodology for industrial contexts. By selectively filtering source domain data before knowledge transfer, Style Filter reduces the quantity of data while maintaining or even enhancing the performance of transfer learning strategy. Offering label-free operation, minimal reliance on prior knowledge, independence from specific models, and re-utilization, Style Filter is evaluated on authentic industrial datasets, highlighting its effectiveness when employed before conventional transfer strategies in the deep learning domain. The results underscore the effectiveness of Style Filter in real-world industrial applications.

Formal program specifications play a crucial role in various stages of software development. However, manually crafting formal program specifications is rather difficult, making the job time-consuming and labor-intensive. It is even more challenging to write specifications that correctly and comprehensively describe the semantics of complex programs. To reduce the burden on software developers, automated specification generation methods have emerged. However, existing methods usually rely on predefined templates or grammar, making them struggle to accurately describe the behavior and functionality of complex real-world programs. To tackle this challenge, we introduce SpecGen, a novel technique for formal program specification generation based on Large Language Models. Our key insight is to overcome the limitations of existing methods by leveraging the code comprehension capability of LLMs. The process of SpecGen consists of two phases. The first phase employs a conversational approach that guides the LLM to generate appropriate specifications for a given program. The second phase, designed for where the LLM fails to generate correct specifications, applies four mutation operators to the model-generated specifications and selects verifiable specifications from the mutated ones through a novel heuristic selection strategy. We evaluate SpecGen on two datasets, including the SV-COMP Java category benchmark and a manually constructed dataset. Experimental results demonstrate that SpecGen succeeds in generating verifiable specifications for 279 out of 385 programs, outperforming the existing purely LLM-based approaches and conventional specification generation tools like Houdini and Daikon. Further investigations on the quality of generated specifications indicate that SpecGen can comprehensively articulate the behaviors of the input program.

Language agents have demonstrated autonomous decision-making abilities by reasoning with foundation models. Recently, efforts have been made to train language agents for performance improvement, with multi-step reasoning and action trajectories as the training data. However, collecting such trajectories still requires considerable human effort, by either artificial annotations or implementations of diverse prompting frameworks. In this work, we propose A$^3$T, a framework that enables the Autonomous Annotation of Agent Trajectories in the style of ReAct. The central role is an ActRe prompting agent, which explains the reason for an arbitrary action. When randomly sampling an external action, the ReAct-style agent could query the ActRe agent with the action to obtain its textual rationales. Novel trajectories are then synthesized by prepending the posterior reasoning from ActRe to the sampled action. In this way, the ReAct-style agent executes multiple trajectories for the failed tasks, and selects the successful ones to supplement its failed trajectory for contrastive self-training. Realized by policy gradient methods with binarized rewards, the contrastive self-training with accumulated trajectories facilitates a closed loop for multiple rounds of language agent self-improvement. We conduct experiments using QLoRA fine-tuning with the open-sourced Mistral-7B-Instruct-v0.2. In AlfWorld, the agent trained with A$^3$T obtains a 1-shot success rate of 96%, and 100% success with 4 iterative rounds. In WebShop, the 1-shot performance of the A$^3$T agent matches human average, and 4 rounds of iterative refinement lead to the performance approaching human experts. A$^3$T agents significantly outperform existing techniques, including prompting with GPT-4, advanced agent frameworks, and fully fine-tuned LLMs.

Interactions with virtual assistants typically start with a predefined trigger phrase followed by the user command. To make interactions with the assistant more intuitive, we explore whether it is feasible to drop the requirement that users must begin each command with a trigger phrase. We explore this task in three ways: First, we train classifiers using only acoustic information obtained from the audio waveform. Second, we take the decoder outputs of an automatic speech recognition (ASR) system, such as 1-best hypotheses, as input features to a large language model (LLM). Finally, we explore a multimodal system that combines acoustic and lexical features, as well as ASR decoder signals in an LLM. Using multimodal information yields relative equal-error-rate improvements over text-only and audio-only models of up to 39% and 61%. Increasing the size of the LLM and training with low-rank adaption leads to further relative EER reductions of up to 18% on our dataset.

Ensuring data privacy is a significant challenge for machine learning applications, not only during model training but also during evaluation. Federated learning has gained significant research interest in recent years as a result. Current research on federated learning primarily focuses on preserving privacy during the training phase. However, model evaluation has not been adequately addressed, despite the potential for significant privacy leaks during this phase as well. In this paper, we demonstrate that the state-of-the-art AUC computation method for federated learning systems, which utilizes differential privacy, still leaks sensitive information about the test data while also requiring a trusted central entity to perform the computations. More importantly, we show that the performance of this method becomes completely unusable as the data size decreases. In this context, we propose an efficient, accurate, robust, and more secure evaluation algorithm capable of computing the AUC in horizontal federated learning systems. Our approach not only enhances security compared to the current state-of-the-art but also surpasses the state-of-the-art AUC computation method in both approximation performance and computational robustness, as demonstrated by experimental results. To illustrate, our approach can efficiently calculate the AUC of a federated learning system involving 100 parties, achieving 99.93% accuracy in just 0.68 seconds, regardless of data size, while providing complete data privacy.

Many parallel and distributed computing research results are obtained in simulation, using simulators that mimic real-world executions on some target system. Each such simulator is configured by picking values for parameters that define the behavior of the underlying simulation models it implements. The main concern for a simulator is accuracy: simulated behaviors should be as close as possible to those observed in the real-world target system. This requires that values for each of the simulator's parameters be carefully picked, or "calibrated," based on ground-truth real-world executions. Examining the current state of the art shows that simulator calibration, at least in the field of parallel and distributed computing, is often undocumented (and thus perhaps often not performed) and, when documented, is described as a labor-intensive, manual process. In this work we evaluate the benefit of automating simulation calibration using simple algorithms. Specifically, we use a real-world case study from the field of High Energy Physics and compare automated calibration to calibration performed by a domain scientist. Our main finding is that automated calibration is on par with or significantly outperforms the calibration performed by the domain scientist. Furthermore, automated calibration makes it straightforward to operate desirable trade-offs between simulation accuracy and simulation speed.

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

北京阿比特科技有限公司