亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new algorithm and software for solving linear equations in symmetric diagonally dominant matrices with non-positive off-diagonal entries (SDDM matrices), including Laplacian matrices. We use pre-conditioned conjugate gradient (PCG) to solve the system of linear equations. Our preconditioner is a variant of the Approximate Cholesky factorization of Kyng and Sachdeva (FOCS 2016). Our factorization approach is simple: we eliminate matrix rows/columns one at a time and update the remaining matrix using sampling to approximate the outcome of complete Cholesky factorization. Unlike earlier approaches, our sampling always maintains a connectivity in the remaining non-zero structure. Our algorithm comes with a tuning parameter that upper bounds the number of samples made per original entry. We implement our algorithm in Julia, providing two versions, AC and AC2, that respectively use 1 and 2 samples per original entry. We compare their single-threaded performance to that of current state-of-the-art solvers Combinatorial Multigrid (CMG), BoomerAMG-preconditioned Krylov solvers from HyPre and PETSc, Lean Algebraic Multigrid (LAMG), and MATLAB's with Incomplete Cholesky Factorization (ICC). Our evaluation uses a broad class of problems, including all large SDDM matrices from the SuiteSparse collection and diverse programmatically generated instances. Our experiments suggest that our algorithm attains a level of robustness and reliability not seen before in SDDM solvers, while retaining good performance across all instances. Our code and data are public, and we provide a tutorial on how to replicate our tests. We hope that others will adopt this suite of tests as a benchmark, which we refer to as SDDM2023. Our solver code is available at: //github.com/danspielman/Laplacians.jl/ Our benchmarking data and tutorial are available at: //rjkyng.github.io/SDDM2023/

相關內容

This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method's strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems.

With the continuous increase in the size and complexity of machine learning models, the need for specialized hardware to efficiently run such models is rapidly growing. To address such a need, silicon-photonic-based neural network (SP-NN) accelerators have recently emerged as a promising alternative to electronic accelerators due to their lower latency and higher energy efficiency. Not only can SP-NNs alleviate the fan-in and fan-out problem with linear algebra processors, their operational bandwidth can match that of the photodetection rate (typically 100 GHz), which is at least over an order of magnitude faster than electronic counterparts that are restricted to a clock rate of a few GHz. Unfortunately, the underlying silicon photonic devices in SP-NNs suffer from inherent optical losses and crosstalk noise originating from fabrication imperfections and undesired optical couplings, the impact of which accumulates as the network scales up. Consequently, the inferencing accuracy in an SP-NN can be affected by such inefficiencies -- e.g., can drop to below 10% -- the impact of which is yet to be fully studied. In this paper, we comprehensively model the optical loss and crosstalk noise using a bottom-up approach, from the device to the system level, in coherent SP-NNs built using Mach-Zehnder interferometer (MZI) devices. The proposed models can be applied to any SP-NN architecture with different configurations to analyze the effect of loss and crosstalk. Such an analysis is important where there are inferencing accuracy and scalability requirements to meet when designing an SP-NN. Using the proposed analytical framework, we show a high power penalty and a catastrophic inferencing accuracy drop of up to 84% for SP-NNs of different scales with three known MZI mesh configurations (i.e., Reck, Clements, and Diamond) due to accumulated optical loss and crosstalk noise.

We introduce a new information-geometric structure associated with the dynamics on discrete objects such as graphs and hypergraphs. The presented setup consists of two dually flat structures built on the vertex and edge spaces, respectively. The former is the conventional duality between density and potential, e.g., the probability density and its logarithmic form induced by a convex thermodynamic function. The latter is the duality between flux and force induced by a convex and symmetric dissipation function, which drives the dynamics of the density. These two are connected topologically by the homological algebraic relation induced by the underlying discrete objects. The generalized gradient flow in this doubly dual flat structure is an extension of the gradient flows on Riemannian manifolds, which include Markov jump processes and nonlinear chemical reaction dynamics as well as the natural gradient and mirror descent. The information-geometric projections on this doubly dual flat structure lead to information-geometric extensions of the Helmholtz-Hodge decomposition and the Otto structure in $L^{2}$ Wasserstein geometry. The structure can be extended to non-gradient nonequilibrium flows, from which we also obtain the induced dually flat structure on cycle spaces. This abstract but general framework can extend the applicability of information geometry to various problems of linear and nonlinear dynamics.

We consider the problem of computing bounds for causal queries on causal graphs with unobserved confounders and discrete valued observed variables, where identifiability does not hold. Existing non-parametric approaches for computing such bounds use linear programming (LP) formulations that quickly become intractable for existing solvers because the size of the LP grows exponentially in the number of edges in the causal graph. We show that this LP can be significantly pruned, allowing us to compute bounds for significantly larger causal inference problems compared to existing techniques. This pruning procedure allows us to compute bounds in closed form for a special class of problems, including a well-studied family of problems where multiple confounded treatments influence an outcome. We extend our pruning methodology to fractional LPs which compute bounds for causal queries which incorporate additional observations about the unit. We show that our methods provide significant runtime improvement compared to benchmarks in experiments and extend our results to the finite data setting. For causal inference without additional observations, we propose an efficient greedy heuristic that produces high quality bounds, and scales to problems that are several orders of magnitude larger than those for which the pruned LP can be solved.

Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.

Efficient differential equation solvers have significantly reduced the sampling time of diffusion models (DMs) while retaining high sampling quality. Among these solvers, exponential integrators (EI) have gained prominence by demonstrating state-of-the-art performance. However, existing high-order EI-based sampling algorithms rely on degenerate EI solvers, resulting in inferior error bounds and reduced accuracy in contrast to the theoretically anticipated results under optimal settings. This situation makes the sampling quality extremely vulnerable to seemingly innocuous design choices such as timestep schedules. For example, an inefficient timestep scheduler might necessitate twice the number of steps to achieve a quality comparable to that obtained through carefully optimized timesteps. To address this issue, we reevaluate the design of high-order differential solvers for DMs. Through a thorough order analysis, we reveal that the degeneration of existing high-order EI solvers can be attributed to the absence of essential order conditions. By reformulating the differential equations in DMs and capitalizing on the theory of exponential integrators, we propose refined EI solvers that fulfill all the order conditions, which we designate as Refined Exponential Solver (RES). Utilizing these improved solvers, RES exhibits more favorable error bounds theoretically and achieves superior sampling efficiency and stability in practical applications. For instance, a simple switch from the single-step DPM-Solver++ to our order-satisfied RES solver when Number of Function Evaluations (NFE) $=9$, results in a reduction of numerical defects by $25.2\%$ and FID improvement of $25.4\%$ (16.77 vs 12.51) on a pre-trained ImageNet diffusion model.

We consider structural equation models (SEMs), in which every variable is a function of a subset of the other variables and a stochastic error. Each such SEM is naturally associated with a directed graph describing the relationships between variables. When the errors are homoscedastic, recent work has proposed methods for inferring the graph from observational data under the assumption that the graph is acyclic (i.e., the SEM is recursive). In this work, we study the setting of homoscedastic errors but allow the graph to be cyclic (i.e., the SEM to be non-recursive). Using an algebraic approach that compares matroids derived from the parameterizations of the models, we derive sufficient conditions for when two simple directed graphs generate different distributions generically. Based on these conditions, we exhibit subclasses of graphs that allow for directed cycles, yet are generically identifiable. We also conjecture a strengthening of our graphical criterion which can be used to distinguish many more non-complete graphs.

Predictive variability due to data ambiguities has typically been addressed via construction of dedicated models with built-in probabilistic capabilities that are trained to predict uncertainty estimates as variables of interest. These approaches require distinct architectural components and training mechanisms, may include restrictive assumptions and exhibit overconfidence, i.e., high confidence in imprecise predictions. In this work, we propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity. The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions. It is architecture agnostic and can be applied to any feed-forward deterministic network without changes to the architecture or training procedure. Experiments on regression tasks on imaging and non-imaging input data show the method's ability to generate diverse and multi-modal predictive distributions, and a desirable correlation of the estimated uncertainty with the prediction error.

Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司