亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The latent block model is used to simultaneously rank the rows and columns of a matrix to reveal a block structure. The algorithms used for estimation are often time consuming. However, recent work shows that the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models and the groups posterior distribution to converge as the size of the data increases to a Dirac mass located at the actual groups configuration. Based on these observations, the algorithm $Largest$ $Gaps$ is proposed in this paper to perform clustering using only the marginals of the matrix, when the number of blocks is very small with respect to the size of the whole matrix in the case of binary data. In addition, a model selection method is incorporated with a proof of its consistency. Thus, this paper shows that studying simplistic configurations (few blocks compared to the size of the matrix or very contrasting blocks) with complex algorithms is useless since the marginals already give very good parameter and classification estimates.

相關內容

Necessary and sufficient conditions of uniform consistency are explored. Nonparametric sets of alternatives are bounded convex sets in $\mathbb{L}_p$ with "small" balls deleted. The "small" balls have the center at the point of hypothesis and radii of balls tend to zero as sample size increases. For problem of hypothesis testing on a density, we show that, for the sets of alternatives, there are uniformly consistent tests for some sequence of radii of the balls, if and only if, convex set is compact. The results are established for problem of hypothesis testing on a density, for signal detection in Gaussian white noise, for linear ill-posed problems with random Gaussian noise and so on.

We propose a posterior for Bayesian Likelihood-Free Inference (LFI) based on generalized Bayesian inference. To define the posterior, we use Scoring Rules (SRs), which evaluate probabilistic models given an observation. In LFI, we can sample from the model but not evaluate the likelihood; hence, we employ SRs which admit unbiased empirical estimates. We use the Energy and Kernel SRs, for which our posterior enjoys consistency in a well-specified setting and outlier robustness. We perform inference with pseudo-marginal (PM) Markov Chain Monte Carlo (MCMC) or stochastic-gradient (SG) MCMC. While PM-MCMC works satisfactorily for simple setups, it mixes poorly for concentrated targets. Conversely, SG-MCMC requires differentiating the simulator model but improves performance over PM-MCMC when both work and scales to higher-dimensional setups as it is rejection-free. Although both techniques target the SR posterior approximately, the error diminishes as the number of model simulations at each MCMC step increases. In our simulations, we employ automatic differentiation to effortlessly differentiate the simulator model. We compare our posterior with related approaches on standard benchmarks and a chaotic dynamical system from meteorology, for which SG-MCMC allows inferring the parameters of a neural network used to parametrize a part of the update equations of the dynamical system.

Among generalized additive models, additive Mat\'ern Gaussian Processes (GPs) are one of the most popular for scalable high-dimensional problems. Thanks to their additive structure and stochastic differential equation representation, back-fitting-based algorithms can reduce the time complexity of computing the posterior mean from $O(n^3)$ to $O(n\log n)$ time where $n$ is the data size. However, generalizing these algorithms to efficiently compute the posterior variance and maximum log-likelihood remains an open problem. In this study, we demonstrate that for Additive Mat\'ern GPs, not only the posterior mean, but also the posterior variance, log-likelihood, and gradient of these three functions can be represented by formulas involving only sparse matrices and sparse vectors. We show how to use these sparse formulas to generalize back-fitting-based algorithms to efficiently compute the posterior mean, posterior variance, log-likelihood, and gradient of these three functions for additive GPs, all in $O(n \log n)$ time. We apply our algorithms to Bayesian optimization and propose efficient algorithms for posterior updates, hyperparameters learning, and computations of the acquisition function and its gradient in Bayesian optimization. Given the posterior, our algorithms significantly reduce the time complexity of computing the acquisition function and its gradient from $O(n^2)$ to $O(\log n)$ for general learning rate, and even to $O(1)$ for small learning rate.

In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size $n$ is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in $\mathbb{R}^K$, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a $\ell_2$ distance of at most $\varepsilon$ from the true simplex (for any $\varepsilon>0$). Also, we theoretically show that in order to achieve this bound, it is sufficient to have $n\ge\left(K^2/\varepsilon^2\right)e^{\Omega\left(K/\mathrm{SNR}^2\right)}$ samples, where $\mathrm{SNR}$ stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as $\mathrm{SNR}\ge\Omega\left(K^{1/2}\right)$, the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in \citep{ashtiani2018nearly}, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.

The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [ICALP '19]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of $1-1/e-\epsilon$ and both generalize and accelerate the results of Ene and Nguyen [ICALP '19]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondr\'ak [SODA '14]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel FREEZE operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [TALG '05] that maintains the maximum weight basis under insertions and deletions of elements in $O(\log n)$ time. For the transversal matroid the FREEZE operation corresponds to requiring the data structure to keep a certain set $S$ of vertices matched, a property that we call $S$-stability.

We introduce and analyse a simple probabilistic model of article production and citation behavior that explicitly assumes that there is no decline in citability of a given article over time. It makes predictions about the number and age of items appearing in the reference list of an article. The latter topics have been studied before, but only in the context of data, and to our knowledge no models have been presented. We then perform large-scale analyses of reference list length for a variety of academic disciplines. The results show that our simple model cannot be rejected, and indeed fits the aggregated data on reference lists rather well. Over the last few decades, the relationship between total publications and mean reference list length is linear to a high level of accuracy. Although our model is clearly an oversimplification, it will likely prove useful for further modeling of the scholarly literature. Finally, we connect our work to the large literature on "aging" or "obsolescence" of scholarly publications, and argue that the importance of that area of research is no longer clear, while much of the existing literature is confused and confusing.

In this paper we study the type IV Knorr Held space time models. Such models typically apply intrinsic Markov random fields and constraints are imposed for identifiability. INLA is an efficient inference tool for such models where constraints are dealt with through a conditioning by kriging approach. When the number of spatial and/or temporal time points become large, it becomes computationally expensive to fit such models, partly due to the number of constraints involved. We propose a new approach, HyMiK, dividing constraints into two separate sets where one part is treated through a mixed effect approach while the other one is approached by the standard conditioning by kriging method, resulting in a more efficient procedure for dealing with constraints. The new approach is easy to apply based on existing implementations of INLA. We run the model on simulated data, on a real data set containing dengue fever cases in Brazil and another real data set of confirmed positive test cases of Covid-19 in the counties of Norway. For all cases we get very similar results when comparing the new approach with the tradition one while at the same time obtaining a significant increase in computational speed, varying on a factor from 2 to 4, depending on the sizes of the data sets.

Nowadays, embedded devices are increasingly present in everyday life, often controlling and processing critical information. For this reason, these devices make use of cryptographic protocols. However, embedded devices are particularly vulnerable to attackers seeking to hijack their operation and extract sensitive information. Code-Reuse Attacks (CRAs) can steer the execution of a program to malicious outcomes, leveraging existing on-board code without direct access to the device memory. Moreover, Side-Channel Attacks (SCAs) may reveal secret information to the attacker based on mere observation of the device. In this paper, we are particularly concerned with thwarting CRAs and SCAs against embedded devices, while taking into account their resource limitations. Fine-grained code diversification can hinder CRAs by introducing uncertainty to the binary code; while software mechanisms can thwart timing or power SCAs. The resilience to either attack may come at the price of the overall efficiency. Moreover, a unified approach that preserves these mitigations against both CRAs and SCAs is not available. This is the main novelty of our approach, Secure Diversity by Construction (SecDivCon); a combinatorial compiler-based approach that combines software diversification against CRAs with software mitigations against SCAs. SecDivCon restricts the performance overhead in the generated code, offering a secure-by-design control on the performance-security trade-off. Our experiments show that SCA-aware diversification is effective against CRAs, while preserving SCA mitigation properties at a low, controllable overhead. Given the combinatorial nature of our approach, SecDivCon is suitable for small, performance-critical functions that are sensitive to SCAs. SecDivCon may be used as a building block to whole-program code diversification or in a re-randomization scheme of cryptographic code.

Sparse model identification enables nonlinear dynamical system discovery from data. However, the control of false discoveries for sparse model identification is challenging, especially in the low-data and high-noise limit. In this paper, we perform a theoretical study on ensemble sparse model discovery, which shows empirical success in terms of accuracy and robustness to noise. In particular, we analyse the bootstrapping-based sequential thresholding least-squares estimator. We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate. In addition, we show that the ensemble sparse model discovery method can perform computationally efficient uncertainty estimation, compared to expensive Bayesian uncertainty quantification methods via MCMC. We demonstrate the convergence properties and connection to uncertainty quantification in various numerical studies on synthetic sparse linear regression and sparse model discovery. The experiments on sparse linear regression support that the bootstrapping-based sequential thresholding least-squares method has better performance for sparse variable selection compared to LASSO, thresholding least-squares, and bootstrapping-based LASSO. In the sparse model discovery experiment, we show that the bootstrapping-based sequential thresholding least-squares method can provide valid uncertainty quantification, converging to a delta measure centered around the true value with increased sample sizes. Finally, we highlight the improved robustness to hyperparameter selection under shifting noise and sparsity levels of the bootstrapping-based sequential thresholding least-squares method compared to other sparse regression methods.

Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.

北京阿比特科技有限公司