In this paper, we consider a smart factory scenario where a set of actuators receive critical control signals from an access point (AP) with reliability and low latency requirements. We investigate jointly active beamforming at the AP and passive phase shifting at the reconfigurable intelligent surface (RIS) for successfully delivering the control signals from the AP to the actuators within a required time duration. The transmission follows a two-stage design. In the first stage, each actuator can both receive the direct signal from AP and the reflected signal from the RIS. In the second stage, the actuators with successful reception in the first stage, relay the message through the D2D network to the actuators with failed receptions. We formulate a non-convex optimization problem where we first obtain an equivalent but more tractable form by addressing the problem with discrete indicator functions. Then, Frobenius inner product based equality is applied for decoupling the optimization variables. Further, we adopt a penalty-based approach to resolve the rank-one constraints. Finally, we deal with the $\ell_0$-norm by $\ell_1$-norm approximation and add an extra term $\ell_1-\ell_2$ for sparsity. Numerical results reveal that the proposed two-stage RIS-aided D2D communication protocol is effective for enabling reliable communication with latency requirements.
We provide a novel framework to study subspace codes for non-coherent communications in wireless networks. To this end, an analog operator channel is defined with inputs and outputs being subspaces of $\mathbb{C}^n$. Then a certain distance is defined to capture the performance of subspace codes in terms of their capability to recover from interference and rank-deficiency of the network. We also study the robustness of the proposed model with respect to an additive noise. Furthermore, we propose a new approach to construct subspace codes in the analog domain, also regarded as Grassmann codes, by leveraging polynomial evaluations over finite fields together with characters associated to finite fields that map their elements to the unit circle in the complex plane. The constructed codes, referred to as character-polynomial (CP) codes, are shown to perform better comparing to other existing constructions of Grassmann codes in terms of the trade-off between the rate and the normalized minimum distance, for a wide range of values for $n$.
Unmanned aerial vehicles (UAVs) are envisioned to be extensively employed for assisting wireless communications in Internet of Things (IoT) applications. On the other hand, terahertz (THz) enabled intelligent reflecting surface (IRS) is expected to be one of the core enabling technologies for forthcoming beyond-5G wireless communications that promise a broad range of data-demand applications. In this paper, we propose a UAV-mounted IRS (UIRS) communication system over THz bands for confidential data dissemination from an access point (AP) towards multiple ground user equipments (UEs) in IoT networks. Specifically, the AP intends to send data to the scheduled UE, while unscheduled UEs may pose potential adversaries. To protect information messages and the privacy of the scheduled UE, we aim to devise an energy-efficient multi-UAV covert communication scheme, where the UIRS is for reliable data transmissions, and an extra UAV is utilized as a cooperative jammer generating artificial noise (AN) to degrade unscheduled UEs detection. We then formulate a novel minimum average energy efficiency (mAEE) optimization problem, targetting to improve the covert throughput and reduce UAVs' propulsion energy consumption subject to the covertness requirement, which is determined analytically. Since the optimization problem is non-convex, we tackle it via the block successive convex approximation (BSCA) approach to iteratively solve a sequence of approximated convex sub-problems, designing the binary user scheduling, AP's power allocation, maximum AN jamming power, IRS beamforming, and both UAVs' trajectory planning. Finally, we present a low-complex overall algorithm for system performance enhancement with complexity and convergence analysis. Numerical results are provided to verify our analysis and demonstrate significant outperformance of our design over other existing benchmark schemes.
Energy efficiency (EE) plays a key role in future wireless communication network and it is easily to achieve high EE performance in low SNR regime. In this paper, a new high EE scheme is proposed for a MIMO wireless communication system working in the low SNR regime by using two dimension resource allocation. First, we define the high EE area based on the relationship between the transmission power and the SNR. To meet the constraint of the high EE area, both frequency and space dimension are needed. Besides analysing them separately, we decided to consider frequency and space dimensions as a unit and proposed a two-dimension scheme. Furthermore, considering communication in the high EE area may cause decline of the communication quality, we add quality-of-service(QoS) constraint into the consideration and derive the corresponding EE performance based on the effective capacity. We also derive an approximate expression to simplify the complex EE performance. Finally, our numerical results demonstrate the effectiveness of the proposed scheme.
Efficient usage of in-device storage and computation capabilities are key solutions to support data-intensive applications such as immersive digital experience. This paper proposes a location-dependent multi-antenna coded caching -based content delivery scheme tailored specifically for wireless immersive viewing applications. First, a memory assignment phase is performed where the content relevant to the identified wireless bottleneck areas are incentivized. As a result, unequal fractions of location-dependent multimedia content are cached at each user. Then, a novel packet generation process is carried out given asymmetric cache placement. During the subsequent delivery phase, the number of packets transmitted to each user is the same, while the sizes of the packets are proportional to the corresponding location-dependent cache ratios. Finally, each user is served with location-specific content using joint multicast beamforming and multi-rate modulation scheme that simultaneously benefits from global caching and spatial multiplexing gains. Numerical experiments and mathematical analysis demonstrate significant performance gains compared to the state-of-the-art.
We consider the cache-aided multiple-input single-output (MISO) broadcast channel, which consists of a server with $L$ antennas and $K$ single-antenna users, where the server contains $N$ files of equal length and each user is equipped with a local cache of size $M$ files. Each user requests an arbitrary file from library. The objective is to design a coded caching scheme based on uncoded placement and one-shot linear delivery phases, to achieve the maximum worst-case sum Degree-of-Freedom (sum-DoF) with low subpacketization. Previously proposed schemes for this setting incurred either an exponential subpacketization order in $K$, or required specific conditions in the system parameters $L$, $K$, $M$ and $N$. In this paper, we propose a new combinatorial structure called multiple-antenna placement delivery array (MAPDA). Based on MAPDA and Latin square, the first proposed scheme achieves the sum-DoF $L+\frac{KM}{N}$ with the subpacketization of $K$ when $\frac{KM}{N}+L=K$. Subsequently, for the general case we propose a transformation approach to construct an MAPDA from any $g$-regular PDA (a class of PDA where each integer in the array occurs $g$ times) for the original shared-link coded caching problem. If the original PDA is the seminal coded caching scheme proposed by Maddah-Ali and Niesen, the resulting scheme can achieve the sum-DoF $L+\frac{KM}{N}$ with reduced subpacketization than the existing schemes.The work can be extended to the multiple independent single-antenna transmitters (servers) corresponding to the cache-aided interference channel proposed by Naderializadeh et al. and the scenario of transmitters equipped with multiple antennas.
Future Tele-operated Driving (ToD) applications place challenging Quality of Service (QoS) demands on existing mobile communication networks that are of highly important to comply with for safe operation. New remote control and platooning services will emerge and pose high data rate and latency requirements. One key enabler for these applications is the newly available 5G New Radio (NR) promising higher bandwidth and lower latency than its predecessors. In addition to that, public 5G networks do not consistently deliver and do not guarantee the required data rates and latency of ToD. In this paper, we discuss the communication-related requirements of tele-operated driving. ToD is regarded as a complex system consisting of multiple research areas. One key aspect of ToD is the provision and maintenance of the required data rate for teleoperation by the mobile network. An in-advance prediction method of the end-to-end data rate based on so-called Radio Environmental Maps (REMs) is discussed. Furthermore, a novel approach improving the prediction accuracy is introduced and it features individually optimized REM layers. Finally, we analyze the implementation of tele-operated driving applications on a scaled vehicular platform combined with a cyber-physical test environment consisting of real and virtual objects. This approach enables large-scale testing of remote operation and autonomous applications.
Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.
In future sixth-generation (6G) mobile networks, the Internet-of-Everything (IoE) is expected to provide extremely massive connectivity for small battery-powered devices. Indeed, massive devices with limited energy storage capacity impose persistent energy demand hindering the lifetime of communication networks. As a remedy, wireless energy transfer (WET) is a key technology to address these critical energy supply issues. On the other hand, cell-free (CF) massive multiple-input multiple-output (MIMO) systems offer an efficient network architecture to realize the roll-out of the IoE. In this article, we first propose the paradigm of reconfigurable intelligent surface (RIS)-aided CF massive MIMO systems for WET, including its potential application scenarios and system architecture. The four-stage transmission procedure is discussed and analyzed to illustrate the practicality of the architecture. Then we put forward and analyze the hardware design of RIS. Particularly, we discuss the three corresponding operating modes and the amalgamation of WET technology and RIS-aided CF massive MIMO. Representative simulation results are given to confirm the superior performance achieved by our proposed schemes. Also, we investigate the optimal location of deploying multiple RISs to achieve the best system performance. Finally, several important research directions of RIS-aided CF massive MIMO systems with WET are presented to inspire further potential investigation.
Wireless sensor networks (WSNs) are vulnerable to eavesdropping as the sensor nodes (SNs) communicate over an open radio channel. Intelligent reflecting surface (IRS) technology can be leveraged for physical layer security in WSNs. In this paper, we propose a joint transmit and reflective beamformer (JTRB) design for secure parameter estimation at the fusion center (FC) in the presence of an eavesdropper (ED) in a WSN. We develop a semidefinite relaxation (SDR)-based iterative algorithm, which alternately yields the transmit beamformer at each SN and the corresponding reflection phases at the IRS, to achieve the minimum mean-squared error (MSE) parameter estimate at the FC, subject to transmit power and ED signal-to-noise ratio constraints. Our simulation results demonstrate robust MSE and security performance of the proposed IRS-based JTRB technique.
The multi-antenna coded caching problem, where the server having $L$ transmit antennas communicating to $K$ users through a wireless broadcast link, is addressed. In the problem setting, the server has a library of $N$ files, and each user is equipped with a dedicated cache of capacity $M$. The idea of extended placement delivery array (EPDA), an array which consists of a special symbol $\star$ and integers in a set $\{1,2,\dots,S\}$, is proposed to obtain a novel solution for the aforementioned multi-antenna coded caching problem. From a $(K,L,F,Z,S)$ EPDA, a multi-antenna coded caching scheme with $K$ users, and the server with $L$ transmit antennas, can be obtained in which the normalized memory $\frac{M}{N}=\frac{Z}{F}$, and the delivery time $T=\frac{S}{F}$. The placement delivery array (for single-antenna coded caching scheme) is a special class of EPDAs with $L=1$. For the multi-antenna coded caching schemes constructed from EPDAs, it is shown that the maximum possible Degree of Freedom (DoF) that can be achieved is $t+L$, where $t=\frac{KM}{N}$ is an integer. Furthermore, two constructions of EPDAs are proposed: a) $ K=t+L$, and b) $K=nt+(n-1)L, \hspace{0.1cm}L\geq t$, where $n\geq 2$ is an integer. In the resulting multi-antenna schemes from those EPDAs achieve the full DoF, while requiring a subpacketization number $\frac{K}{\text{gcd}(K,t,L)}$. This subpacketization number is less than that required by previously known schemes in the literature.