Blocking, a special case of rerandomization, is routinely implemented in the design stage of randomized experiments to balance baseline covariates. Regression adjustment is highly encouraged in the analysis stage to adjust for the remaining covariate imbalances. Researchers have recommended combining these techniques; however, the research on this combination in a randomization-based inference framework with a large number of covariates is limited. This paper proposes several methods that combine the blocking, rerandomization, and regression adjustment techniques in randomized experiments with high-dimensional covariates. In the design stage, we suggest the implementation of blocking or rerandomization or both techniques to balance a fixed number of covariates most relevant to the outcomes. For the analysis stage, we propose regression adjustment methods based on the Lasso to adjust for the remaining imbalances in the additional high-dimensional covariates. Moreover, we establish the asymptotic properties of the proposed Lasso-adjusted average treatment effect estimators and outline conditions under which these estimators are more efficient than the unadjusted estimators. In addition, we provide conservative variance estimators to facilitate valid inferences. Our analysis is randomization-based, allowing the outcome data generating models to be mis-specified. Simulation studies and two real data analyses demonstrate the advantages of the proposed methods.
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem based on frequency-domain sufficient statistic for the observed time series is presented. We investigate an alternating direction method of multipliers (ADMM) approach for optimization of the sparse-group lasso penalized log-likelihood. We provide sufficient conditions for convergence in the Frobenius norm of the inverse PSD estimators to the true value, jointly across all frequencies, where the number of frequencies are allowed to increase with sample size. This results also yields a rate of convergence. We also empirically investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.
In many practices, scientists are particularly interested in detecting which of the predictors are truly associated with a multivariate response. It is more accurate to model multiple responses as one vector rather than separating each component one by one. This is particularly true for complex traits having multiple correlated components. A Bayesian multivariate variable selection (BMVS) approach is proposed to select important predictors influencing the multivariate response from a candidate pool with an ultrahigh dimension. By applying the sample-size-dependent spike and slab priors, the BMVS approach satisfies the strong selection consistency property under certain conditions, which represents the advantages of BMVS over other existing Bayesian multivariate regression-based approaches. The proposed approach considers the covariance structure of multiple responses without assuming independence and integrates the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. It is demonstrated through simulations that the BMVS approach outperforms some other relevant frequentist and Bayesian approaches. The proposed BMVS approach possesses the flexibility of wide applications, including genome-wide association studies with multiple correlated phenotypes and a large scale of genetic variants and/or environmental variables, as demonstrated in the real data analyses section. The computer code and test data of the proposed method are available as an R package.
Many real-world phenomena are naturally bivariate. This includes blood pressure, which comprises systolic and diastolic levels. Here, we develop a Bayesian hierarchical model that estimates these values and their interactions simultaneously, using sparse data that vary substantially between countries and over time. A key element of the model is a two-dimensional second-order Intrinsic Gaussian Markov Random Field, which captures non-linear trends in the variables and their interactions. The model is fitted using Markov chain Monte Carlo methods, with a block Metropolis-Hastings algorithm providing efficient updates. Performance is demonstrated using simulated and real data.
Experimental advances enabling high-resolution external control create new opportunities to produce materials with exotic properties. In this work, we investigate how a multi-agent reinforcement learning approach can be used to design external control protocols for self-assembly. We find that a fully decentralized approach performs remarkably well even with a "coarse" level of external control. More importantly, we see that a partially decentralized approach, where we include information about the local environment allows us to better control our system towards some target distribution. We explain this by analyzing our approach as a partially-observed Markov decision process. With a partially decentralized approach, the agent is able to act more presciently, both by preventing the formation of undesirable structures and by better stabilizing target structures as compared to a fully decentralized approach.
This paper considers the inference for heterogeneous treatment effects in dynamic settings that covariates and treatments are longitudinal. We focus on high-dimensional cases that the sample size, $N$, is potentially much larger than the covariate vector's dimension, $d$. The marginal structural mean models are considered. We propose a "sequential model doubly robust" estimator constructed based on "moment targeted" nuisance estimators. Such nuisance estimators are carefully designed through non-standard loss functions, reducing the bias resulting from potential model misspecifications. We achieve $\sqrt N$-inference even when model misspecification occurs. We only require one nuisance model to be correctly specified at each time spot. Such model correctness conditions are weaker than all the existing work, even containing the literature on low dimensions.
The bilevel functional data under consideration has two sources of repeated measurements. One is to densely and repeatedly measure a variable from each subject at a series of regular time/spatial points, which is named as functional data. The other is to repeatedly collect one functional data at each of the multiple visits. Compared to the well-established single-level functional data analysis approaches, those that are related to high-dimensional bilevel functional data are limited. In this article, we propose a high-dimensional functional mixed-effect model (HDFMM) to analyze the association between the bilevel functional response and a large scale of scalar predictors. We utilize B-splines to smooth and estimate the infinite-dimensional functional coefficient, a sandwich smoother to estimate the covariance function and integrate the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. We demonstrate that the performance of the HDFMM method is promising under various simulation studies and a real data analysis. As an extension of the well-established linear mixed model, the HDFMM model extends the response from repeatedly measured scalars to repeatedly measured functional data/curves, while maintaining the ability to account for the relatedness among samples and control for confounding factors.
We propose confidence regions with asymptotically correct uniform coverage probability of parameters whose Fisher information matrix can be singular at important points of the parameter set. Our work is motivated by the need for reliable inference on scale parameters close or equal to zero in mixed models, which is obtained as a special case. The confidence regions are constructed by inverting a continuous extension of the score test statistic standardized by expected information, which we show exists at points of singular information under regularity conditions. Similar results have previously only been obtained for scalar parameters, under conditions stronger than ours, and applications to mixed models have not been considered. In simulations our confidence regions have near-nominal coverage with as few as $n = 20$ independent observations, regardless of how close to the boundary the true parameter is. It is a corollary of our main results that the proposed test statistic has an asymptotic chi-square distribution with degrees of freedom equal to the number of tested parameters, even if they are on the boundary of the parameter set.
We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
A confidence sequence is a sequence of confidence intervals that is uniformly valid over an unbounded time horizon. Our work develops confidence sequences whose widths go to zero, with nonasymptotic coverage guarantees under nonparametric conditions. We draw connections between the Cram\'er-Chernoff method for exponential concentration, the law of the iterated logarithm (LIL), and the sequential probability ratio test -- our confidence sequences are time-uniform extensions of the first; provide tight, nonasymptotic characterizations of the second; and generalize the third to nonparametric settings, including sub-Gaussian and Bernstein conditions, self-normalized processes, and matrix martingales. We illustrate the generality of our proof techniques by deriving an empirical-Bernstein bound growing at a LIL rate, as well as a novel upper LIL for the maximum eigenvalue of a sum of random matrices. Finally, we apply our methods to covariance matrix estimation and to estimation of sample average treatment effect under the Neyman-Rubin potential outcomes model.
The matrix normal model, the family of Gaussian matrix-variate distributions whose covariance matrix is the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor models. We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics. In contrast to existing bounds, our results do not rely on the factors being well-conditioned or sparse. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bound for the largest factor and overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability. Our main tool is geodesic strong convexity in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels. We also provide numerical evidence that combining the flip-flop algorithm with a simple shrinkage estimator can improve performance in the undersampled regime.