亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present new results for nonparametric identification of causal effects using noisy proxies for unobserved confounders. Our approach builds on the results of \citet{Hu2008} who tackle the problem of general measurement error. We call this the `triple proxy' approach because it requires three proxies that are jointly independent conditional on unobservables. We consider three different choices for the third proxy: it may be an outcome, a vector of treatments, or a collection of auxiliary variables. We compare to an alternative identification strategy introduced by \citet{Miao2018a} in which causal effects are identified using two conditionally independent proxies. We refer to this as the `double proxy' approach. The triple proxy approach identifies objects that are not identified by the double proxy approach, including some that capture the variation in average treatment effects between strata of the unobservables. Moreover, the conditional independence assumptions in the double and triple proxy approaches are non-nested.

相關內容

A growing line of work shows how learned predictions can be used to break through worst-case barriers to improve the running time of an algorithm. However, incorporating predictions into data structures with strong theoretical guarantees remains underdeveloped. This paper takes a step in this direction by showing that predictions can be leveraged in the fundamental online list labeling problem. In the problem, n items arrive over time and must be stored in sorted order in an array of size Theta(n). The array slot of an element is its label and the goal is to maintain sorted order while minimizing the total number of elements moved (i.e., relabeled). We design a new list labeling data structure and bound its performance in two models. In the worst-case learning-augmented model, we give guarantees in terms of the error in the predictions. Our data structure provides strong guarantees: it is optimal for any prediction error and guarantees the best-known worst-case bound even when the predictions are entirely erroneous. We also consider a stochastic error model and bound the performance in terms of the expectation and variance of the error. Finally, the theoretical results are demonstrated empirically. In particular, we show that our data structure has strong performance on real temporal data sets where predictions are constructed from elements that arrived in the past, as is typically done in a practical use case.

We consider the optimization of a smooth and strongly convex objective using constant step-size stochastic gradient descent (SGD) and study its properties through the prism of Markov chains. We show that, for unbiased gradient estimates with mildly controlled variance, the iteration converges to an invariant distribution in total variation distance. We also establish this convergence in Wasserstein-2 distance under a relaxed assumption on the gradient noise distribution compared to previous work. Thanks to the invariance property of the limit distribution, our analysis shows that the latter inherits sub-Gaussian or sub-exponential concentration properties when these hold true for the gradient. This allows the derivation of high-confidence bounds for the final estimate. Finally, under such conditions in the linear case, we obtain a dimension-free deviation bound for the Polyak-Ruppert average of a tail sequence. All our results are non-asymptotic and their consequences are discussed through a few applications.

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

Learning a nonparametric system of ordinary differential equations (ODEs) from $n$ trajectory snapshots in a $d$-dimensional state space requires learning $d$ functions of $d$ variables. Explicit formulations scale quadratically in $d$ unless additional knowledge about system properties, such as sparsity and symmetries, is available. In this work, we propose a linear approach to learning using the implicit formulation provided by vector-valued Reproducing Kernel Hilbert Spaces. By rewriting the ODEs in a weaker integral form, which we subsequently minimize, we derive our learning algorithm. The minimization problem's solution for the vector field relies on multivariate occupation kernel functions associated with the solution trajectories. We validate our approach through experiments on highly nonlinear simulated and real data, where $d$ may exceed 100. We further demonstrate the versatility of the proposed method by learning a nonparametric first order quasilinear partial differential equation.

Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low order interactions structure.

Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.

Causal inference of exact individual treatment outcomes in the presence of hidden confounders is rarely possible. Instead, recent work has adapted conformal prediction to produce outcome intervals. Unfortunately this family of methods tends to be overly conservative, sometimes giving uninformative intervals. We introduce an alternative approach termed Caus-Modens, for characterizing causal outcome intervals by modulated ensembles. Motivated from Bayesian statistics and ensembled uncertainty quantification, Caus-Modens gives tighter outcome intervals in practice, measured by the necessary interval size to achieve sufficient coverage on three separate benchmarks. The last benchmark is a novel usage of GPT-4 for observational experiments with unknown but probeable ground truth.

A very classical problem in statistics is to test the stochastic superiority of one distribution to another. However, many existing approaches are developed for independent samples and, moreover, do not take censored data into account. We develop a new estimand-driven method to compare the effectiveness of two treatments in the context of right-censored survival data with matched pairs. With the help of competing risks techniques, the so-called relative treatment effect is estimated. It quantifies the probability that the individual undergoing the first treatment survives the matched individual undergoing the second treatment. Hypothesis tests and confidence intervals are based on a studentized version of the estimator, where resampling-based inference is established by means of a randomization method. In a simulation study, we found that the developed test exhibits good power, when compared to competitors which are actually testing the simpler null hypothesis of the equality of both marginal survival functions. Finally, we apply the methodology to a well-known benchmark data set from a trial with patients suffering from with diabetic retinopathy.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司