This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
The goal of multi-objective optimization (MOO) is to learn under multiple, potentially conflicting, objectives. One widely used technique to tackle MOO is through linear scalarization, where one fixed preference vector is used to combine the objectives into a single scalar value for optimization. However, recent work (Hu et al., 2024) has shown linear scalarization often fails to capture the non-convex regions of the Pareto Front, failing to recover the complete set of Pareto optimal solutions. In light of the above limitations, this paper focuses on Tchebycheff scalarization that optimizes for the worst-case objective. In particular, we propose an online mirror descent algorithm for Tchebycheff scalarization, which we call OMD-TCH. We show that OMD-TCH enjoys a convergence rate of $O(\sqrt{\log m/T})$ where $m$ is the number of objectives and $T$ is the number of iteration rounds. We also propose a novel adaptive online-to-batch conversion scheme that significantly improves the practical performance of OMD-TCH while maintaining the same convergence guarantees. We demonstrate the effectiveness of OMD-TCH and the adaptive conversion scheme on both synthetic problems and federated learning tasks under fairness constraints, showing state-of-the-art performance.
This paper explores the application of Positive-Unlabeled (PU) learning for enhanced Distributed Denial-of-Service (DDoS) detection in cloud environments. Utilizing the $\texttt{BCCC-cPacket-Cloud-DDoS-2024}$ dataset, we implement PU learning with four machine learning algorithms: XGBoost, Random Forest, Support Vector Machine, and Na\"{i}ve Bayes. Our results demonstrate the superior performance of ensemble methods, with XGBoost and Random Forest achieving $F_{1}$ scores exceeding 98%. We quantify the efficacy of each approach using metrics including $F_{1}$ score, ROC AUC, Recall, and Precision. This study bridges the gap between PU learning and cloud-based anomaly detection, providing a foundation for addressing Context-Aware DDoS Detection in multi-cloud environments. Our findings highlight the potential of PU learning in scenarios with limited labeled data, offering valuable insights for developing more robust and adaptive cloud security mechanisms.
Online multi-task learning (OMTL) enhances streaming data processing by leveraging the inherent relations among multiple tasks. It can be described as an optimization problem in which a single loss function is defined for multiple tasks. Existing gradient-descent-based methods for this problem might suffer from gradient vanishing and poor conditioning issues. Furthermore, the centralized setting hinders their application to online parallel optimization, which is vital to big data analytics. Therefore, this study proposes a novel OMTL framework based on the alternating direction multiplier method (ADMM), a recent breakthrough in optimization suitable for the distributed computing environment because of its decomposable and easy-to-implement nature. The relations among multiple tasks are modeled dynamically to fit the constant changes in an online scenario. In a classical distributed computing architecture with a central server, the proposed OMTL algorithm with the ADMM optimizer outperforms SGD-based approaches in terms of accuracy and efficiency. Because the central server might become a bottleneck when the data scale grows, we further tailor the algorithm to a decentralized setting, so that each node can work by only exchanging information with local neighbors. Experimental results on a synthetic and several real-world datasets demonstrate the efficiency of our methods.
The growing deployment of reinforcement learning from human feedback (RLHF) calls for a deeper theoretical investigation of its underlying models. The prevalent models of RLHF do not account for neuroscience-backed, partially-observed "internal states" that can affect human feedback, nor do they accommodate intermediate feedback during an interaction. Both of these can be instrumental in speeding up learning and improving alignment. To address these limitations, we model RLHF as reinforcement learning with partially observed reward-states (PORRL). We accommodate two kinds of feedback $-$ cardinal and dueling feedback. We first demonstrate that PORRL subsumes a wide class of RL problems, including traditional RL, RLHF, and reward machines. For cardinal feedback, we present two model-based methods (POR-UCRL, POR-UCBVI). We give both cardinal regret and sample complexity guarantees for the methods, showing that they improve over naive history-summarization. We then discuss the benefits of a model-free method like GOLF with naive history-summarization in settings with recursive internal states and dense intermediate feedback. For this purpose, we define a new history aware version of the Bellman-eluder dimension and give a new guarantee for GOLF in our setting, which can be exponentially sharper in illustrative examples. For dueling feedback, we show that a naive reduction to cardinal feedback fails to achieve sublinear dueling regret. We then present the first explicit reduction that converts guarantees for cardinal regret to dueling regret. In both feedback settings, we show that our models and guarantees generalize and extend existing ones.
This paper presents the detection of DDoS attacks in IoT networks using machine learning models. Their rapid growth has made them highly susceptible to various forms of cyberattacks, many of whose security procedures are implemented in an irregular manner. It evaluates the efficacy of different machine learning models, such as XGBoost, K-Nearest Neighbours, Stochastic Gradient Descent, and Na\"ive Bayes, in detecting DDoS attacks from normal network traffic. Each model has been explained on several performance metrics, such as accuracy, precision, recall, and F1-score to understand the suitability of each model in real-time detection and response against DDoS threats. This comparative analysis will, therefore, enumerate the unique strengths and weaknesses of each model with respect to the IoT environments that are dynamic and hence moving in nature. The effectiveness of these models is analyzed, showing how machine learning can greatly enhance IoT security frameworks, offering adaptive, efficient, and reliable DDoS detection capabilities. These findings have shown the potential of machine learning in addressing the pressing need for robust IoT security solutions that can mitigate modern cyber threats and assure network integrity.
Applying deep learning (DL) for annotating surgical instruments in robot-assisted minimally invasive surgeries (MIS) represents a significant advancement in surgical technology. This systematic review examines 48 studies that and advanced DL methods and architectures. These sophisticated DL models have shown notable improvements in the precision and efficiency of detecting and segmenting surgical tools. The enhanced capabilities of these models support various clinical applications, including real-time intraoperative guidance, comprehensive postoperative evaluations, and objective assessments of surgical skills. By accurately identifying and segmenting surgical instruments in video data, DL models provide detailed feedback to surgeons, thereby improving surgical outcomes and reducing complication risks. Furthermore, the application of DL in surgical education is transformative. The review underscores the significant impact of DL on improving the accuracy of skill assessments and the overall quality of surgical training programs. However, implementing DL in surgical tool detection and segmentation faces challenges, such as the need for large, accurately annotated datasets to train these models effectively. The manual annotation process is labor-intensive and time-consuming, posing a significant bottleneck. Future research should focus on automating the detection and segmentation process and enhancing the robustness of DL models against environmental variations. Expanding the application of DL models across various surgical specialties will be essential to fully realize this technology's potential. Integrating DL with other emerging technologies, such as augmented reality (AR), also offers promising opportunities to further enhance the precision and efficacy of surgical procedures.
We present a comprehensive study of answer quality evaluation in Retrieval-Augmented Generation (RAG) applications using vRAG-Eval, a novel grading system that is designed to assess correctness, completeness, and honesty. We further map the grading of quality aspects aforementioned into a binary score, indicating an accept or reject decision, mirroring the intuitive "thumbs-up" or "thumbs-down" gesture commonly used in chat applications. This approach suits factual business contexts where a clear decision opinion is essential. Our assessment applies vRAG-Eval to two Large Language Models (LLMs), evaluating the quality of answers generated by a vanilla RAG application. We compare these evaluations with human expert judgments and find a substantial alignment between GPT-4's assessments and those of human experts, reaching 83% agreement on accept or reject decisions. This study highlights the potential of LLMs as reliable evaluators in closed-domain, closed-ended settings, particularly when human evaluations require significant resources.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.