亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We discovered that certain patterns called injective patterns remain stable during the revolution process, allowing us to create many reversible CA simply by using them to design the revolution rules. By examining injective patterns, we investigated their structural stability during revolutions. This led us to discover extended patterns and pattern mixtures that can create more reversible cellular automata. Furthermore, our research proposed a new way to study the reversibility of CA by observing the structure of local rule $f$. In this paper, we will explicate our study and propose an efficient method for finding the injective patterns. Our algorithms can find injective rules and generate local rule $f$ by traversing $2^{N}$, instead of $2^{2^{N}}$ to check all injective rules and pick the injective ones.

相關內容

Processing 是一門開源編(bian)程語言(yan)和(he)與(yu)之配套的集成開發環境(IDE)的名稱。Processing 在(zai)電子藝術和(he)視覺設計社區被用(yong)來教授編(bian)程基礎,并運用(yong)于大量的新媒體和(he)互動(dong)藝術作品中。

This paper presents a randomized algorithm for the problem of single-source shortest paths on directed graphs with real (both positive and negative) edge weights. Given an input graph with $n$ vertices and $m$ edges, the algorithm completes in $\tilde{O}(mn^{8/9})$ time with high probability. For real-weighted graphs, this result constitutes the first asymptotic improvement over the classic $O(mn)$-time algorithm variously attributed to Shimbel, Bellman, Ford, and Moore.

This paper proposes a new notion of Markov $\alpha$-potential games to study Markov games. Two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, are analyzed in this framework of Markov $\alpha$-potential games, with explicit characterization of the upper bound for $\alpha$ and its relation to game parameters. Moreover, any maximizer of the $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium of the game. Furthermore, two algorithms for the Nash regret analysis, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, are presented and corroborated by numerical experiments.

We study the problem of learning decentralized linear quadratic regulator when the system model is unknown a priori. We propose an online learning algorithm that adaptively designs a control policy as new data samples from a single system trajectory become available. Our algorithm design uses a disturbance-feedback representation of state-feedback controllers coupled with online convex optimization with memory and delayed feedback. We show that our controller enjoys an expected regret that scales as $\sqrt{T}$ with the time horizon $T$ for the case of partially nested information pattern. For more general information patterns, the optimal controller is unknown even if the system model is known. In this case, the regret of our controller is shown with respect to a linear sub-optimal controller. We validate our theoretical findings using numerical experiments.

Feature selection (FS) plays an important role in machine learning, which extracts important features and accelerates the learning process. In this paper, we propose a deep FS method that simultaneously conducts feature selection and differentiable $ k $-NN graph learning based on the Dirichlet Energy. The Dirichlet Energy identifies important features by measuring their smoothness on the graph structure, and facilitates the learning of a new graph that reflects the inherent structure in new feature subspace. We employ Optimal Transport theory to address the non-differentiability issue of learning $ k $-NN graphs in neural networks, which theoretically makes our method applicable to other graph neural networks for dynamic graph learning. Furthermore, the proposed framework is interpretable, since all modules are designed algorithmically. We validate the effectiveness of our model with extensive experiments on both synthetic and real-world datasets.

The Function-as-a-Service (FaaS) execution model increases developer productivity by removing operational concerns such as managing hardware or software runtimes. Developers, however, still need to partition their applications into FaaS functions, which is error-prone and complex: Encapsulating only the smallest logical unit of an application as a FaaS function maximizes flexibility and reusability. Yet, it also leads to invocation overheads, additional cold starts, and may increase cost due to double billing during synchronous invocations. Conversely, deploying an entire application as a single FaaS function avoids these overheads but decreases flexibility. In this paper we present Fusionize, a framework that automates optimizing for this trade-off by automatically fusing application code into an optimized multi-function composition. Developers only need to write fine-grained application code following the serverless model, while Fusionize automatically fuses different parts of the application into FaaS functions, manages their interactions, and configures the underlying infrastructure. At runtime, it monitors application performance and adapts it to minimize request-response latency and costs. Real-world use cases show that Fusionize can improve the deployment artifacts of the application, reducing both median request-response latency and cost of an example IoT application by more than 35%.

We study the weighted average consensus problem for a gossip network of agents with vector-valued states. For a given matrix-weighted graph, the gossip process is described by a sequence of pairs of adjacent agents communicating and updating their states based on the edge matrix weight. Our key contribution is providing conditions for the convergence of this non-homogeneous Markov process as well as the characterization of its limit set. To this end, we introduce the notion of "$w$-holonomy" of a set of stochastic matrices, which enables the characterization of sequences of gossiping pairs resulting in reaching a desired consensus in a decentralized manner. Stated otherwise, our result characterizes the limiting behavior of infinite products of (non-commuting, possibly with absorbing states) stochastic matrices.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司