亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of learning decentralized linear quadratic regulator when the system model is unknown a priori. We propose an online learning algorithm that adaptively designs a control policy as new data samples from a single system trajectory become available. Our algorithm design uses a disturbance-feedback representation of state-feedback controllers coupled with online convex optimization with memory and delayed feedback. We show that our controller enjoys an expected regret that scales as $\sqrt{T}$ with the time horizon $T$ for the case of partially nested information pattern. For more general information patterns, the optimal controller is unknown even if the system model is known. In this case, the regret of our controller is shown with respect to a linear sub-optimal controller. We validate our theoretical findings using numerical experiments.

相關內容

In deep learning, classification tasks are formalized as optimization problems solved via the minimization of the cross-entropy. However, recent advancements in the design of objective functions allow the $f$-divergence measure to generalize the formulation of the optimization problem for classification. With this goal in mind, we adopt a Bayesian perspective and formulate the classification task as a maximum a posteriori probability problem. We propose a class of objective functions based on the variational representation of the $f$-divergence, from which we extract a list of five posterior probability estimators leveraging well-known $f$-divergences. In addition, driven by the challenge of improving the state-of-the-art approach, we propose a bottom-up method that leads us to the formulation of a new objective function (and posterior probability estimator) corresponding to a novel $f$-divergence referred to as shifted log (SL). First, we theoretically prove the convergence property of the posterior probability estimators. Then, we numerically test the set of proposed objective functions in three application scenarios: toy examples, image data sets, and signal detection/decoding problems. The analyzed tasks demonstrate the effectiveness of the proposed estimators and that the SL divergence achieves the highest classification accuracy in almost all the scenarios.

We develop the theory of illfounded and cyclic proof systems in the context of the modal $\mu$-calculus. A fine analysis of provability and admissibility bridges the finitary, cyclic and illfounded notions of proof for this logic and re-enforces the subtlety of two important normal form theorems: guardedness and disjunctiveness.

Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Moreover, we develop parameter selection strategies. Finally, we quantitatively and qualitatively evaluate the proposed algorithmic scheme on the 3D Open MPI data set with different levels of preprocessing.

The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-$\alpha$, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-$\alpha$'s training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-$\alpha$ only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly \$300,000 (\$26,000 vs. \$320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-$\alpha$ excels in image quality, artistry, and semantic control. We hope PIXART-$\alpha$ will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.

The minimum set cover (MSC) problem admits two classic algorithms: a greedy $\ln n$-approximation and a primal-dual $f$-approximation, where $n$ is the universe size and $f$ is the maximum frequency of an element. Both algorithms are simple and efficient, and remarkably -- one cannot improve these approximations under hardness results by more than a factor of $(1+\epsilon)$, for any constant $\epsilon > 0$. In their pioneering work, Gupta et al. [STOC'17] showed that the greedy algorithm can be dynamized to achieve $O(\log n)$-approximation with update time $O(f \log n)$. Building on this result, Hjuler et al. [STACS'18] dynamized the greedy minimum dominating set (MDS) algorithm, achieving a similar approximation with update time $O(\Delta \log n)$ (the analog of $O(f \log n)$), albeit for unweighted instances. The approximations of both algorithms, which are the state-of-the-art, exceed the static $\ln n$-approximation by a rather large constant factor. In sharp contrast, the current best dynamic primal-dual MSC algorithms achieve fast update times together with an approximation that exceeds the static $f$-approximation by a factor of (at most) $1+\epsilon$, for any $\epsilon > 0$. This paper aims to bridge the gap between the best approximation factor of the dynamic greedy MSC and MDS algorithms and the static $\ln n$ bound. We present dynamic algorithms for weighted greedy MSC and MDS with approximation $(1+\epsilon)\ln n$ for any $\epsilon > 0$, while achieving the same update time (ignoring dependencies on $\epsilon$) of the best previous algorithms (with approximation significantly larger than $\ln n$). Moreover, [...]

The performance of modern machine learning algorithms depends upon the selection of a set of hyperparameters. Common examples of hyperparameters are learning rate and the number of layers in a dense neural network. Auto-ML is a branch of optimization that has produced important contributions in this area. Within Auto-ML, hyperband-based approaches, which eliminate poorly-performing configurations after evaluating them at low budgets, are among the most effective. However, the performance of these algorithms strongly depends on how effectively they allocate the computational budget to various hyperparameter configurations. We present the new Parameter Optimization with Conscious Allocation (POCA), a hyperband-based algorithm that adaptively allocates the inputted budget to the hyperparameter configurations it generates following a Bayesian sampling scheme. We compare POCA to its nearest competitor at optimizing the hyperparameters of an artificial toy function and a deep neural network and find that POCA finds strong configurations faster in both settings.

Querying cohesive subgraphs on temporal graphs (e.g., social network, finance network, etc.) with various conditions has attracted intensive research interests recently. In this paper, we study a novel Temporal $(k,\mathcal{X})$-Core Query (TXCQ) that extends a fundamental Temporal $k$-Core Query (TCQ) proposed in our conference paper by optimizing or constraining an arbitrary metric $\mathcal{X}$ of $k$-core, such as size, engagement, interaction frequency, time span, burstiness, periodicity, etc. Our objective is to address specific TXCQ instances with conditions on different $\mathcal{X}$ in a unified algorithm framework that guarantees scalability. For that, this journal paper proposes a taxonomy of measurement $\mathcal{X}(\cdot)$ and achieve our objective using a two-phase framework while $\mathcal{X}(\cdot)$ is time-insensitive or time-monotonic. Specifically, Phase 1 still leverages the query processing algorithm of TCQ to induce all distinct $k$-cores during a given time range, and meanwhile locates the ``time zones'' in which the cores emerge. Then, Phase 2 conducts fast local search and $\mathcal{X}$ evaluation in each time zone with respect to the time insensitivity or monotonicity of $\mathcal{X}(\cdot)$. By revealing two insightful concepts named tightest time interval and loosest time interval that bound time zones, the redundant core induction and unnecessary $\mathcal{X}$ evaluation in a zone can be reduced dramatically. Our experimental results demonstrate that TXCQ can be addressed as efficiently as TCQ, which achieves the latest state-of-the-art performance, by using a general algorithm framework that leaves $\mathcal{X}(\cdot)$ as a user-defined function.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

Network representation learning in low dimensional vector space has attracted considerable attention in both academic and industrial domains. Most real-world networks are dynamic with addition/deletion of nodes and edges. The existing graph embedding methods are designed for static networks and they cannot capture evolving patterns in a large dynamic network. In this paper, we propose a dynamic embedding method, dynnode2vec, based on the well-known graph embedding method node2vec. Node2vec is a random walk based embedding method for static networks. Applying static network embedding in dynamic settings has two crucial problems: 1) Generating random walks for every time step is time consuming 2) Embedding vector spaces in each timestamp are different. In order to tackle these challenges, dynnode2vec uses evolving random walks and initializes the current graph embedding with previous embedding vectors. We demonstrate the advantages of the proposed dynamic network embedding by conducting empirical evaluations on several large dynamic network datasets.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司