亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Leveraging the rich information extracted from light field (LF) cameras is instrumental for dense prediction tasks. However, adapting light field data to enhance Salient Object Detection (SOD) still follows the traditional RGB methods and remains under-explored in the community. Previous approaches predominantly employ a custom two-stream design to discover the implicit angular feature within light field cameras, leading to significant information isolation between different LF representations. In this study, we propose an efficient paradigm (LF Tracy) to address this limitation. We eschew the conventional specialized fusion and decoder architecture for a dual-stream backbone in favor of a unified, single-pipeline approach. This comprises firstly a simple yet effective data augmentation strategy called MixLD to bridge the connection of spatial, depth, and implicit angular information under different LF representations. A highly efficient information aggregation (IA) module is then introduced to boost asymmetric feature-wise information fusion. Owing to this innovative approach, our model surpasses the existing state-of-the-art methods, particularly demonstrating a 23% improvement over previous results on the latest large-scale PKU dataset. By utilizing only 28.9M parameters, the model achieves a 10% increase in accuracy with 3M additional parameters compared to its backbone using RGB images and an 86% rise to its backbone using LF images. The source code will be made publicly available at //github.com/FeiBryantkit/LF-Tracy.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · Integration · 多峰值 · 有向 ·
2024 年 3 月 12 日

Currently, little research has been done on knowledge editing for Large Vision-Language Models (LVLMs). Editing LVLMs faces the challenge of effectively integrating diverse modalities (image and text) while ensuring coherent and contextually relevant modifications. An existing benchmark has three metrics (Reliability, Locality and Generality) to measure knowledge editing for LVLMs. However, the benchmark falls short in the quality of generated images used in evaluation and cannot assess whether models effectively utilize edited knowledge in relation to the associated content. We adopt different data collection methods to construct a new benchmark, $\textbf{KEBench}$, and extend new metric (Portability) for a comprehensive evaluation. Leveraging a multimodal knowledge graph, our image data exhibits clear directionality towards entities. This directional aspect can be further utilized to extract entity-related knowledge and form editing data. We conducted experiments of different editing methods on five LVLMs, and thoroughly analyze how these methods impact the models. The results reveal strengths and deficiencies of these methods and, hopefully, provide insights into potential avenues for future research.

Tangible interfaces in mixed reality (MR) environments allow for intuitive data interactions. Tangible cubes, with their rich interaction affordances, high maneuverability, and stable structure, are particularly well-suited for exploring multi-dimensional data types. However, the design potential of these cubes is underexplored. This study introduces a design space for tangible cubes in MR, focusing on interaction space, visualization space, sizes, and multiplicity. Using spatio-temporal data, we explored the interaction affordances of these cubes in a workshop (N=24). We identified unique interactions like rotating, tapping, and stacking, which are linked to augmented reality (AR) visualization commands. Integrating user-identified interactions, we created a design space for tangible-cube interactions and visualization. A prototype visualizing global health spending with small cubes was developed and evaluated, supporting both individual and combined cube manipulation. This research enhances our grasp of tangible interaction in MR, offering insights for future design and application in diverse data contexts.

Recently, the proliferation of increasingly realistic synthetic images generated by various generative adversarial networks has increased the risk of misuse. Consequently, there is a pressing need to develop a generalizable detector for accurately recognizing fake images. The conventional methods rely on generating diverse training sources or large pretrained models. In this work, we show that, on the contrary, the small and training-free filter is sufficient to capture more general artifact representations. Due to its unbias towards both the training and test sources, we define it as Data-Independent Operator (DIO) to achieve appealing improvements on unseen sources. In our framework, handcrafted filters and the randomly-initialized convolutional layer can be used as the training-free artifact representations extractor with excellent results. With the data-independent operator of a popular classifier, such as Resnet50, one could already reach a new state-of-the-art without bells and whistles. We evaluate the effectiveness of the DIO on 33 generation models, even DALLE and Midjourney. Our detector achieves a remarkable improvement of $13.3\%$, establishing a new state-of-the-art performance. The DIO and its extension can serve as strong baselines for future methods. The code is available at \url{//github.com/chuangchuangtan/Data-Independent-Operator}.

Qualitative data analysis provides insight into the underlying perceptions and experiences within unstructured data. However, the time-consuming nature of the coding process, especially for larger datasets, calls for innovative approaches, such as the integration of Large Language Models (LLMs). This short paper presents initial findings from a study investigating the integration of LLMs for coding tasks of varying complexity in a real-world dataset. Our results highlight the challenges inherent in coding with extensive codebooks and contexts, both for human coders and LLMs, and suggest that the integration of LLMs into the coding process requires a task-by-task evaluation. We examine factors influencing the complexity of coding tasks and initiate a discussion on the usefulness and limitations of incorporating LLMs in qualitative research.

UNet and its variants have been widely used in medical image segmentation. However, these models, especially those based on Transformer architectures, pose challenges due to their large number of parameters and computational loads, making them unsuitable for mobile health applications. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as competitive alternatives to CNN and Transformer architectures. Building upon this, we employ Mamba as a lightweight substitute for CNN and Transformer within UNet, aiming at tackling challenges stemming from computational resource limitations in real medical settings. To this end, we introduce the Lightweight Mamba UNet (LightM-UNet) that integrates Mamba and UNet in a lightweight framework. Specifically, LightM-UNet leverages the Residual Vision Mamba Layer in a pure Mamba fashion to extract deep semantic features and model long-range spatial dependencies, with linear computational complexity. Extensive experiments conducted on two real-world 2D/3D datasets demonstrate that LightM-UNet surpasses existing state-of-the-art literature. Notably, when compared to the renowned nnU-Net, LightM-UNet achieves superior segmentation performance while drastically reducing parameter and computation costs by 116x and 21x, respectively. This highlights the potential of Mamba in facilitating model lightweighting. Our code implementation is publicly available at //github.com/MrBlankness/LightM-UNet.

In the evolving landscape of recommender systems, the integration of Large Language Models (LLMs) such as ChatGPT marks a new era, introducing the concept of Recommendation via LLM (RecLLM). While these advancements promise unprecedented personalization and efficiency, they also bring to the fore critical concerns regarding fairness, particularly in how recommendations might inadvertently perpetuate or amplify biases associated with sensitive user attributes. In order to address these concerns, our study introduces a comprehensive evaluation framework, CFaiRLLM, aimed at evaluating (and thereby mitigating) biases on the consumer side within RecLLMs. Our research methodically assesses the fairness of RecLLMs by examining how recommendations might vary with the inclusion of sensitive attributes such as gender, age, and their intersections, through both similarity alignment and true preference alignment. By analyzing recommendations generated under different conditions-including the use of sensitive attributes in user prompts-our framework identifies potential biases in the recommendations provided. A key part of our study involves exploring how different detailed strategies for constructing user profiles (random, top-rated, recent) impact the alignment between recommendations made without consideration of sensitive attributes and those that are sensitive-attribute-aware, highlighting the bias mechanisms within RecLLMs. The findings in our study highlight notable disparities in the fairness of recommendations, particularly when sensitive attributes are integrated into the recommendation process, either individually or in combination. The analysis demonstrates that the choice of user profile sampling strategy plays a significant role in affecting fairness outcomes, highlighting the complexity of achieving fair recommendations in the era of LLMs.

Vehicle detection in Unmanned Aerial Vehicle (UAV) captured images has wide applications in aerial photography and remote sensing. There are many public benchmark datasets proposed for the vehicle detection and tracking in UAV images. Recent studies show that adding an adversarial patch on objects can fool the well-trained deep neural networks based object detectors, posing security concerns to the downstream tasks. However, the current public UAV datasets might ignore the diverse altitudes, vehicle attributes, fine-grained instance-level annotation in mostly side view with blurred vehicle roof, so none of them is good to study the adversarial patch based vehicle detection attack problem. In this paper, we propose a new dataset named EVD4UAV as an altitude-sensitive benchmark to evade vehicle detection in UAV with 6,284 images and 90,886 fine-grained annotated vehicles. The EVD4UAV dataset has diverse altitudes (50m, 70m, 90m), vehicle attributes (color, type), fine-grained annotation (horizontal and rotated bounding boxes, instance-level mask) in top view with clear vehicle roof. One white-box and two black-box patch based attack methods are implemented to attack three classic deep neural networks based object detectors on EVD4UAV. The experimental results show that these representative attack methods could not achieve the robust altitude-insensitive attack performance.

Tutorial videos are a popular help source for learning feature-rich software. However, getting quick answers to questions about tutorial videos is difficult. We present an automated approach for responding to tutorial questions. By analyzing 633 questions found in 5,944 video comments, we identified different question types and observed that users frequently described parts of the video in questions. We then asked participants (N=24) to watch tutorial videos and ask questions while annotating the video with relevant visual anchors. Most visual anchors referred to UI elements and the application workspace. Based on these insights, we built AQuA, a pipeline that generates useful answers to questions with visual anchors. We demonstrate this for Fusion 360, showing that we can recognize UI elements in visual anchors and generate answers using GPT-4 augmented with that visual information and software documentation. An evaluation study (N=16) demonstrates that our approach provides better answers than baseline methods.

Texts, widgets, and images on a UI page do not work separately. Instead, they are partitioned into groups to achieve certain interaction functions or visual information. Existing studies on UI elements grouping mainly focus on a specific single UI-related software engineering task, and their groups vary in appearance and function. In this case, we propose our semantic component groups that pack adjacent text and non-text elements with similar semantics. In contrast to those task-oriented grouping methods, our semantic component group can be adopted for multiple UI-related software tasks, such as retrieving UI perceptual groups, improving code structure for automatic UI-to-code generation, and generating accessibility data for screen readers. To recognize semantic component groups on a UI page, we propose a robust, deep learning-based vision detector, UISCGD, which extends the SOTA deformable-DETR by incorporating UI element color representation and a learned prior on group distribution. The model is trained on our UI screenshots dataset of 1988 mobile GUIs from more than 200 apps in both iOS and Android platforms. The evaluation shows that our UISCGD achieves 6.1\% better than the best baseline algorithm and 5.4 \% better than deformable-DETR in which it is based.

Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal

北京阿比特科技有限公司