亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive new boundary conditions and implementation procedures for nonlinear initial boundary value problems (IBVPs) with non-zero boundary data that lead to bounded solutions. The new boundary procedure is applied to nonlinear IBVPs in skew-symmetric form, including dissipative terms. The complete procedure has two main ingredients. In the first part (published in [1, 2]), the energy and entropy rate in terms of a surface integral with boundary terms was produced for problems with first derivatives. In this second part we complement it by adding second derivative terms and new nonlinear boundary procedures leading for boundary conditions with non-zero data. The new nonlinear boundary procedure generalise the well known characteristic boundary procedure for linear problems to the nonlinear setting. To introduce the procedure, a skew-symmetric scalar IBVP encompassing the linear advection equation and Burgers equation is analysed. Once the continuous analysis is done, we show that energy stable nonlinear discrete approximations follow by using summation-by-parts operators combined with weak boundary conditions. The scalar analysis is subsequently repeated for general nonlinear systems of equations. Finally, the new boundary procedure is applied to four important IBVPs in computational fluid dynamics: the incompressible Euler and Navier-Stokes, the shallow water and the compressible Euler equations.

相關內容

To ensure reliable object detection in autonomous systems, the detector must be able to adapt to changes in appearance caused by environmental factors such as time of day, weather, and seasons. Continually adapting the detector to incorporate these changes is a promising solution, but it can be computationally costly. Our proposed approach is to selectively adapt the detector only when necessary, using new data that does not have the same distribution as the current training data. To this end, we investigate three popular metrics for domain gap evaluation and find that there is a correlation between the domain gap and detection accuracy. Therefore, we apply the domain gap as a criterion to decide when to adapt the detector. Our experiments show that our approach has the potential to improve the efficiency of the detector's operation in real-world scenarios, where environmental conditions change in a cyclical manner, without sacrificing the overall performance of the detector. Our code is publicly available at //github.com/dadung/DGE-CDA.

P2P trading of energy can be a good alternative to incentivize distributed non-conventional energy production and meet the burgeoning energy demand. For efficient P2P trading, a free market for trading needs to be established while ensuring the information reliability, security, and privacy. Blockchain has been used to provide this framework, but it consumes very high energy and is slow. Further, until now, no blockchain model has considered the role of conventional electric utility companies in P2P trading. In this paper, we have introduced a credit blockchain that reduces energy consumption by employing a new mechanism to update transactions and increases speed by providing interest free loans to buyers. This model also integrates the electric utility companies within the P2P trading framework, thereby increasing members trading options. We have also discussed the pricing strategies for trading. All the above assertions have been verified through simulations, demonstrating that this model will promote P2P trading by providing enhanced security, speed, and greater trading options. The proposed model will also help trade energy at prices beneficial for both sellers and buyers.

The importance of qualitative parallel data in machine translation has long been determined but it has always been very difficult to obtain such in sufficient quantity for the majority of world languages, mainly because of the associated cost and also the lack of accessibility to these languages. Despite the potential for obtaining parallel datasets from online articles using automatic approaches, forensic investigations have found a lot of quality-related issues such as misalignment, and wrong language codes. In this work, we present a simple but qualitative parallel sentence aligner that carefully leveraged the closed-access Cohere multilingual embedding, a solution that ranked second in the just concluded #CoHereAIHack 2023 Challenge (see //ai6lagos.devpost.com). The proposed approach achieved $94.96$ and $54.83$ f1 scores on FLORES and MAFAND-MT, compared to $3.64$ and $0.64$ of LASER respectively. Our method also achieved an improvement of more than 5 BLEU scores over LASER, when the resulting datasets were used with MAFAND-MT dataset to train translation models. Our code and data are available for research purposes here (//github.com/abumafrim/Cohere-Align).

Current protein language models (pLMs) predominantly focus on single-chain protein sequences and often have not accounted for constraints on generative design imposed by protein-protein interactions. To address this gap, we present paired Antibody T5 (pAbT5), an encoder-decoder model to generate complementary heavy or light chain from its pairing partner. We show that our model respects conservation in framework regions and variability in hypervariable domains, demonstrated by agreement with sequence alignment and variable-length CDR loops. We also show that our model captures chain pairing preferences through the recovery of ground-truth chain type and gene families. Our results showcase the potential of pAbT5 in generative antibody design, incorporating biological constraints from chain pairing preferences.

Model specification searches and modifications are commonly employed in covariance structure analysis (CSA) or structural equation modeling (SEM) to improve the goodness-of-fit. However, these practices can be susceptible to capitalizing on chance, as a model that fits one sample may not generalize to another sample from the same population. This paper introduces the improved Lagrange Multipliers (LM) test, which provides a reliable method for conducting a thorough model specification search and effectively identifying missing parameters. By leveraging the stepwise bootstrap method in the standard LM and Wald tests, our data-driven approach enhances the accuracy of parameter identification. The results from Monte Carlo simulations and two empirical applications in political science demonstrate the effectiveness of the improved LM test, particularly when dealing with small sample sizes and models with large degrees of freedom. This approach contributes to better statistical fit and addresses the issue of capitalization on chance in model specification.

For a multi-attribute decision making (MADM) problem, the information of alternatives under different attributes is given in the form of intuitionistic fuzzy number(IFN). Intuitionistic fuzzy set (IFS) plays an important role in dealing with un-certain and incomplete information. The similarity measure of intuitionistic fuzzy sets (IFSs) has always been a research hotspot. A new similarity measure of IFSs based on the projection technology and cosine similarity measure, which con-siders the direction and length of IFSs at the same time, is first proposed in this paper. The objective of the presented pa-per is to develop a MADM method and medical diagnosis method under IFS using the projection technology and cosine similarity measure. Some examples are used to illustrate the comparison results of the proposed algorithm and some exist-ing methods. The comparison result shows that the proposed algorithm is effective and can identify the optimal scheme accurately. In medical diagnosis area, it can be used to quickly diagnose disease. The proposed method enriches the exist-ing similarity measure methods and it can be applied to not only IFSs, but also other interval-valued intuitionistic fuzzy sets(IVIFSs) as well.

In causal inference, matching is one of the most widely used methods to mimic a randomized experiment using observational (non-experimental) data. Ideally, treated units are exactly matched with control units for the covariates so that the treatments are as-if randomly assigned within each matched set, and valid randomization tests for treatment effects can then be conducted as in a randomized experiment. However, inexact matching typically exists, especially when there are continuous or many observed covariates or when unobserved covariates exist. Previous matched observational studies routinely conducted downstream randomization tests as if matching was exact, as long as the matched datasets satisfied some prespecified balance criteria or passed some balance tests. Some recent studies showed that this routine practice could render a highly inflated type-I error rate of randomization tests, especially when the sample size is large. To handle this problem, we propose an iterative convex programming framework for randomization tests with inexactly matched datasets. Under some commonly used regularity conditions, we show that our approach can produce valid randomization tests (i.e., robustly controlling the type-I error rate) for any inexactly matched datasets, even when unobserved covariates exist. Our framework allows the incorporation of flexible machine learning models to better extract information from covariate imbalance while robustly controlling the type-I error rate.

We consider the problem of detecting causal relationships between discrete time series, in the presence of potential confounders. A hypothesis test is introduced for identifying the temporally causal influence of $(x_n)$ on $(y_n)$, causally conditioned on a possibly confounding third time series $(z_n)$. Under natural Markovian modeling assumptions, it is shown that the null hypothesis, corresponding to the absence of temporally causal influence, is equivalent to the underlying `causal conditional directed information rate' being equal to zero. The plug-in estimator for this functional is identified with the log-likelihood ratio test statistic for the desired test. This statistic is shown to be asymptotically normal under the alternative hypothesis and asymptotically $\chi^2$ distributed under the null, facilitating the computation of $p$-values when used on empirical data. The effectiveness of the resulting hypothesis test is illustrated on simulated data, validating the underlying theory. The test is also employed in the analysis of spike train data recorded from neurons in the V4 and FEF brain regions of behaving animals during a visual attention task. There, the test results are seen to identify interesting and biologically relevant information.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司