We establish improved uniform error bounds for the time-splitting methods for the long-time dynamics of the Schr\"odinger equation with small potential and the nonlinear Schr\"odinger equation (NLSE) with weak nonlinearity. For the Schr\"odinger equation with small potential characterized by a dimensionless parameter $\varepsilon \in (0, 1]$ representing the amplitude of the potential, we employ the unitary flow property of the (second-order) time-splitting Fourier pseudospectral (TSFP) method in $L^2$-norm to prove a uniform error bound at $C(T)(h^m +\tau^2)$ up to the long time $T_\varepsilon= T/\varepsilon$ for any $T>0$ and uniformly for $0<\varepsilon\le1$, while $h$ is the mesh size, $\tau$ is the time step, $m \ge 2$ depends on the regularity of the exact solution, and $C(T) =C_0+C_1T$ grows at most linearly with respect to $T$ with $C_0$ and $C_1$ two positive constants independent of $T$, $\varepsilon$, $h$ and $\tau$. Then by introducing a new technique of {\sl regularity compensation oscillation} (RCO) in which the high frequency modes are controlled by regularity and the low frequency modes are analyzed by phase cancellation and energy method, an improved uniform error bound at $O(h^{m-1} + \varepsilon \tau^2)$ is established in $H^1$-norm for the long-time dynamics up to the time at $O(1/\varepsilon)$ of the Schr\"odinger equation with $O(\varepsilon)$-potential with $m \geq 3$, which is uniformly for $\varepsilon\in(0,1]$. Moreover, the RCO technique is extended to prove an improved uniform error bound at $O(h^{m-1} + \varepsilon^2\tau^2)$ in $H^1$-norm for the long-time dynamics up to the time at $O(1/\varepsilon^2)$ of the cubic NLSE with $O(\varepsilon^2)$-nonlinearity strength, uniformly for $\varepsilon \in (0, 1]$. Extensions to the first-order and fourth-order time-splitting methods are discussed.
Our objective is to stabilise and accelerate the time-domain boundary element method (TDBEM) for the three-dimensional wave equation. To overcome the potential time instability, we considered using the Burton--Miller-type boundary integral equation (BMBIE) instead of the ordinary boundary integral equation (OBIE), which consists of the single- and double-layer potentials. In addition, we introduced a smooth temporal basis, i.e. the B-spline temporal basis of order $d$, whereas $d=1$ was used together with the OBIE in a previous study [Takahashi 2014]. Corresponding to these new techniques, we generalised the interpolation-based fast multipole method that was developed in \cite{takahashi2014}. In particular, we constructed the multipole-to-local formula (M2L) so that even for $d\ge 2$ we can maintain the computational complexity of the entire algorithm, i.e. $O(N_{\rm s}^{1+\delta} N_{\rm t})$, where $N_{\rm s}$ and $N_{\rm t}$ denote the number of boundary elements and the number of time steps, respectively, and $\delta$ is theoretically estimated as $1/3$ or $1/2$. The numerical examples indicated that the BMBIE is indispensable for solving the homogeneous Dirichlet problem, but the order $d$ cannot exceed 1 owing to the doubtful cancellation of significant digits when calculating the corresponding layer potentials. In regard to the homogeneous Neumann problem, the previous TDBEM based on the OBIE with $d=1$ can be unstable, whereas it was found that the BMBIE with $d=2$ can be stable and accurate. The present study will enhance the usefulness of the TDBEM for 3D scalar wave problems.
High-index saddle dynamics provides an effective means to compute the any-index saddle points and construct the solution landscape. In this paper we prove the optimal-order error estimates for Euler discretization of high-index saddle dynamics with respect to the time step size, which remains untreated in the literature. We overcome the main difficulties that lie in the strong nonlinearity of the saddle dynamics and the orthonormalization procedure in the numerical scheme that is uncommon in standard discretization of differential equations. The derived methods are further extended to study the generalized high-index saddle dynamics for non-gradient systems and provide theoretical support for the accuracy of numerical implementations.
In this paper, we study two kinds of structure-preserving splitting methods, including the Lie--Trotter type splitting method and the finite difference type method, for the stochasticlogarithmic Schr\"odinger equation (SlogS equation) via a regularized energy approximation. We first introduce a regularized SlogS equation with a small parameter $0<\epsilon\ll1$ which approximates the SlogS equation and avoids the singularity near zero density. Then we present a priori estimates, the regularized entropy and energy, and the stochastic symplectic structure of the proposed numerical methods. Furthermore, we derive both the strong convergence rates and the convergence rates of the regularized entropy and energy. To the best of our knowledge, this is the first result concerning the construction and analysis of numerical methods for stochastic Schr\"odinger equations with logarithmic nonlinearities.
We derive a priori error of the Godunov method for the multidimensional Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the $L^2$-norm of errors in density, momentum and entropy. Under the assumption that the numerical density and energy are bounded, we obtain a convergence rate of $1/2$ for the relative energy in the $L^1$-norm. Further, under the assumption -- the total variation of numerical solution is bounded, we obtain the first order convergence rate for the relative energy in the $L^1$-norm. Consequently, numerical solutions (density, momentum and entropy) converge in the $L^2$-norm with the convergence rate of $1/2$. The numerical results presented for Riemann problems are consistent with our theoretical analysis.
We study dynamical Galerkin schemes for evolutionary partial differential equations (PDEs), where the projection operator changes over time. When selecting a subset of basis functions, the projection operator is non-differentiable in time and an integral formulation has to be used. We analyze the projected equations with respect to existence and uniqueness of the solution and prove that non-smooth projection operators introduce dissipation, a result which is crucial for adaptive discretizations of PDEs, e.g., adaptive wavelet methods. For the Burgers equation we illustrate numerically that thresholding the wavelet coefficients, and thus changing the projection space, will indeed introduce dissipation of energy. We discuss consequences for the so-called `pseudo-adaptive' simulations, where time evolution and dealiasing are done in Fourier space, whilst thresholding is carried out in wavelet space. Numerical examples are given for the inviscid Burgers equation in 1D and the incompressible Euler equations in 2D and 3D.
In this paper, we study two kinds of structure-preserving splitting methods, including the Lie--Trotter type splitting method and the finite difference type method, for the stochasticlogarithmic Schr\"odinger equation (SlogS equation) via a regularized energy approximation. We first introduce a regularized SlogS equation with a small parameter $0<\epsilon\ll1$ which approximates the SlogS equation and avoids the singularity near zero density. Then we present a priori estimates, the regularized entropy and energy, and the stochastic symplectic structure of the proposed numerical methods. Furthermore, we derive both the strong convergence rates and the convergence rates of the regularized entropy and energy. To the best of our knowledge, this is the first result concerning the construction and analysis of numerical methods for stochastic Schr\"odinger equations with logarithmic nonlinearities.
In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct $\phi$, an approximate distance function to the boundary of a domain. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $\phi$ multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries. Benchmark problems in 1D for linear elasticity, advection-diffusion, and beam bending; and in 2D for the Poisson equation, biharmonic equation, and the nonlinear Eikonal equation are considered. The approach extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the 4D hypercube. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
We study risk-sensitive reinforcement learning (RL) based on the entropic risk measure. Although existing works have established non-asymptotic regret guarantees for this problem, they leave open an exponential gap between the upper and lower bounds. We identify the deficiencies in existing algorithms and their analysis that result in such a gap. To remedy these deficiencies, we investigate a simple transformation of the risk-sensitive Bellman equations, which we call the exponential Bellman equation. The exponential Bellman equation inspires us to develop a novel analysis of Bellman backup procedures in risk-sensitive RL algorithms, and further motivates the design of a novel exploration mechanism. We show that these analytic and algorithmic innovations together lead to improved regret upper bounds over existing ones.
In this paper, we revisit the $L_2$-norm error estimate for $C^0$-interior penalty analysis of Dirichlet boundary control problem governed by biharmonic operator. In this work, we have relaxed the interior angle condition of the domain from $120$ degrees to $180$ degrees, therefore this analysis can be carried out for any convex domain. The theoretical findings are illustrated by numerical experiments. Moreover, we propose a new analysis to derive the error estimates for the biharmonic equation with Cahn-Hilliard type boundary condition under minimal regularity assumption.
The focus of the present research is on the analysis of local energy stability of high-order (including split-form) summation-by-parts methods, with e.g. two-point entropy-conserving fluxes, approximating non-linear conservation laws. Our main finding is that local energy stability, i.e., the numerical growth rate does not exceed the growth rate of the continuous problem, is not guaranteed even when the scheme is non-linearly stable and that this may have adverse implications for simulation results. We show that entropy-conserving two-point fluxes are inherently locally energy unstable, as they can be dissipative or anti-dissipative. Unfortunately, these fluxes are at the core of many commonly used high-order entropy-stable extensions, including split-form summation-by-parts discontinuous Galerkin spectral element methods (or spectral collocation methods). For the non-linear Burgers equation, we further demonstrate numerically that such schemes cause exponential growth of errors during the simulation. Furthermore, we encounter a similar abnormal behaviour for the compressible Euler equations, for a smooth exact solution of a density wave. Finally, for the same case, we demonstrate numerically that other commonly known split-forms, such as the Kennedy and Gruber splitting, are also locally energy unstable.