What is the state of the art in continual machine learning? Although a natural question for predominant static benchmarks, the notion to train systems in a lifelong manner entails a plethora of additional challenges with respect to set-up and evaluation. The latter have recently sparked a growing amount of critiques on prominent algorithm-centric perspectives and evaluation protocols being too narrow, resulting in several attempts at constructing guidelines in favor of specific desiderata or arguing against the validity of prevalent assumptions. In this work, we depart from this mindset and argue that the goal of a precise formulation of desiderata is an ill-posed one, as diverse applications may always warrant distinct scenarios. Instead, we introduce the Continual Learning EValuation Assessment Compass, CLEVA-Compass for short. The compass provides the visual means to both identify how approaches are practically reported and how works can simultaneously be contextualized in the broader literature landscape. In addition to promoting compact specification in the spirit of recent replication trends, the CLEVA-Compass thus provides an intuitive chart to understand the priorities of individual systems, where they resemble each other, and what elements are missing towards a fair comparison.
Human pose information is a critical component in many downstream image processing tasks, such as activity recognition and motion tracking. Likewise, a pose estimator for the illustrated character domain would provide a valuable prior for assistive content creation tasks, such as reference pose retrieval and automatic character animation. But while modern data-driven techniques have substantially improved pose estimation performance on natural images, little work has been done for illustrations. In our work, we bridge this domain gap by efficiently transfer-learning from both domain-specific and task-specific source models. Additionally, we upgrade and expand an existing illustrated pose estimation dataset, and introduce two new datasets for classification and segmentation subtasks. We then apply the resultant state-of-the-art character pose estimator to solve the novel task of pose-guided illustration retrieval. All data, models, and code will be made publicly available.
The Agda Universal Algebra Library (agda-algebras) is a library of types and programs (theorems and proofs) we developed to formalize the foundations of universal algebra in dependent type theory using the Agda programming language and proof assistant. In this paper we draw on and explain many components of the agda-algebras library, which we extract into a single Agda module in order to present a self-contained formal and constructive proof of Birkhoff's HSP theorem in Martin-L\"of dependent type theory. In the course of our presentation, we highlight some of the more challenging aspects of formalizing the basic definitions and theorems of universal algebra in type theory. Nonetheless, we hope this paper and the agda-algebras library serve as further evidence in support of the claim that dependent type theory and the Agda language, despite the technical demands they place on the user, are accessible to working mathematicians (such as ourselves) who possess sufficient patience and resolve to formally verify their results with a proof assistant. Indeed, the agda-algebras library now includes a substantial collection of definitions, theorems, and proofs from universal algebra, illustrating the expressive power of inductive and dependent types for representing and reasoning about general algebraic and relational structures.
Gradient inversion attack (or input recovery from gradient) is an emerging threat to the security and privacy preservation of Federated learning, whereby malicious eavesdroppers or participants in the protocol can recover (partially) the clients' private data. This paper evaluates existing attacks and defenses. We find that some attacks make strong assumptions about the setup. Relaxing such assumptions can substantially weaken these attacks. We then evaluate the benefits of three proposed defense mechanisms against gradient inversion attacks. We show the trade-offs of privacy leakage and data utility of these defense methods, and find that combining them in an appropriate manner makes the attack less effective, even under the original strong assumptions. We also estimate the computation cost of end-to-end recovery of a single image under each evaluated defense. Our findings suggest that the state-of-the-art attacks can currently be defended against with minor data utility loss, as summarized in a list of potential strategies. Our code is available at: //github.com/Princeton-SysML/GradAttack.
Several Multi-Agent System (MAS) metamodels and languages have been proposed in the literature to support the development of agent-based applications. MAS metamodels are used to capture a collection of concepts the relevant entities and relationships in the MAS domain, which include entities such as agent, message, role, action and plan, and relationships that represent, for example, that a role is responsible for one or more tasks. In addition, to models, MAS modeling languages have also been used to support the development of MASs in a wide variety of domains, including social networking, robotics, security and smart city environments. However, there is a lack of support in these models and languages for abstractions involving norms and adaptations as well as their interactions. This paper presents a survey of some existing metamodels and languages and compares their expressiveness using abstractions related to agents, norms and adaptation. The comparison serves as a basis for the definition of a new MAS metamodeling.
An important part of law and regulation is demanding explanations for actual and potential failures. We ask questions like: What happened (or might happen) to cause this failure? And why did (or might) it happen? These are disguised normative questions - they really ask what ought to have happened, and how the humans involved ought to have behaved. To answer the normative questions, law and regulation seeks a narrative explanation, a story. At present, we seek these kinds of narrative explanation from AI technology, because as humans we seek to understand technology's working through constructing a story to explain it. Our cultural history makes this inevitable - authors like Asimov, writing narratives about future AI technologies like intelligent robots, have told us that they act in ways explainable by the narrative logic which we use to explain human actions and so they can also be explained to us in those terms. This is, at least currently, not true. This work argues that we can only solve this problem by working from both sides. Technologists will need to find ways to tell us stories which law and regulation can use. But law and regulation will also need to accept different kinds of narratives, which tell stories about fundamental legal and regulatory concepts like fairness and reasonableness that are different from those we are used to.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
This review paper discusses how context has been used in neural machine translation (NMT) in the past two years (2017-2018). Starting with a brief retrospect on the rapid evolution of NMT models, the paper then reviews studies that evaluate NMT output from various perspectives, with emphasis on those analyzing limitations of the translation of contextual phenomena. In a subsequent version, the paper will then present the main methods that were proposed to leverage context for improving translation quality, and distinguishes methods that aim to improve the translation of specific phenomena from those that consider a wider unstructured context.
Recent years have witnessed significant progresses in deep Reinforcement Learning (RL). Empowered with large scale neural networks, carefully designed architectures, novel training algorithms and massively parallel computing devices, researchers are able to attack many challenging RL problems. However, in machine learning, more training power comes with a potential risk of more overfitting. As deep RL techniques are being applied to critical problems such as healthcare and finance, it is important to understand the generalization behaviors of the trained agents. In this paper, we conduct a systematic study of standard RL agents and find that they could overfit in various ways. Moreover, overfitting could happen "robustly": commonly used techniques in RL that add stochasticity do not necessarily prevent or detect overfitting. In particular, the same agents and learning algorithms could have drastically different test performance, even when all of them achieve optimal rewards during training. The observations call for more principled and careful evaluation protocols in RL. We conclude with a general discussion on overfitting in RL and a study of the generalization behaviors from the perspective of inductive bias.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.