亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Detecting Parkinson's Disease in its early stages using EEG data presents a significant challenge. This paper introduces a novel approach, representing EEG data as a 15-variate series of bandpower and peak frequency values/coefficients. The hypothesis is that this representation captures essential information from the noisy EEG signal, improving disease detection. Statistical features extracted from this representation are utilised as input for interpretable machine learning models, specifically Decision Tree and AdaBoost classifiers. Our classification pipeline is deployed within our proposed framework which enables high-importance data types and brain regions for classification to be identified. Interestingly, our analysis reveals that while there is no significant regional importance, the N1 sleep data type exhibits statistically significant predictive power (p < 0.01) for early-stage Parkinson's Disease classification. AdaBoost classifiers trained on the N1 data type consistently outperform baseline models, achieving over 80% accuracy and recall. Our classification pipeline statistically significantly outperforms baseline models indicating that the model has acquired useful information. Paired with the interpretability (ability to view feature importance's) of our pipeline this enables us to generate meaningful insights into the classification of early stage Parkinson's with our N1 models. In Future, these models could be deployed in the real world - the results presented in this paper indicate that more than 3 in 4 early-stage Parkinson's cases would be captured with our pipeline.

相關內容

This paper studies zero-shot anomaly classification (AC) and segmentation (AS) in industrial vision. We reveal that the abundant normal and abnormal cues implicit in unlabeled test images can be exploited for anomaly determination, which is ignored by prior methods. Our key observation is that for the industrial product images, the normal image patches could find a relatively large number of similar patches in other unlabeled images, while the abnormal ones only have a few similar patches. We leverage such a discriminative characteristic to design a novel zero-shot AC/AS method by Mutual Scoring (MuSc) of the unlabeled images, which does not need any training or prompts. Specifically, we perform Local Neighborhood Aggregation with Multiple Degrees (LNAMD) to obtain the patch features that are capable of representing anomalies in varying sizes. Then we propose the Mutual Scoring Mechanism (MSM) to leverage the unlabeled test images to assign the anomaly score to each other. Furthermore, we present an optimization approach named Re-scoring with Constrained Image-level Neighborhood (RsCIN) for image-level anomaly classification to suppress the false positives caused by noises in normal images. The superior performance on the challenging MVTec AD and VisA datasets demonstrates the effectiveness of our approach. Compared with the state-of-the-art zero-shot approaches, MuSc achieves a $\textbf{21.1%}$ PRO absolute gain (from 72.7% to 93.8%) on MVTec AD, a $\textbf{19.4%}$ pixel-AP gain and a $\textbf{14.7%}$ pixel-AUROC gain on VisA. In addition, our zero-shot approach outperforms most of the few-shot approaches and is comparable to some one-class methods. Code is available at //github.com/xrli-U/MuSc.

This paper unveils CG-Eval, the first-ever comprehensive and automated evaluation framework designed for assessing the generative capabilities of large Chinese language models across a spectrum of academic disciplines. CG-Eval stands out for its automated process, which critically assesses models based on their proficiency in generating precise and contextually relevant responses to a diverse array of questions within six key domains: Science and Engineering, Humanities and Social Sciences, Mathematical Calculations, Medical Practitioner Qualification Examination, Judicial Examination, and Certified Public Accountant Examination. Alongside this, we introduce Gscore, an innovative composite index developed from a weighted sum of multiple metrics. Gscore uniquely automates the quality measurement of a model's text generation against reference standards, providing a detailed and nuanced assessment of model performance. This automation not only enhances the efficiency and scalability of the evaluation process but also ensures objective and consistent assessment across various models. The detailed test data and results, highlighting the robust capabilities and comparative performance of the evaluated models, are accessible at //cgeval.besteasy.com/.

Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.

The present study puts forward a novel biographical knowledge graph (KG) on Prof. S. R. Ranganathan, one of the pioneering figures in the Library and Information Science (LIS) domain. It has been found that most of the relevant facts about Ranganathan exist in a variety of resources (e.g., books, essays, journal articles, websites, blogs, etc.), offering information in a fragmented and piecemeal way. With this dedicated KG (henceforth known as RKG), we hope to furnish a 360-degree view of his life and achievements. To the best of our knowledge, such a dedicated representation is unparalleled in its scope and coverage: using state-of-the-art technology for anyone to openly access, use/re-use, and contribute. Inspired by Ranganathan's theories and ideas, the KG was developed using a "facet-based methodology" at two levels: in the identification of the vital biographical aspects and the development of the ontological model. Finally, with this study, we call for a community-driven effort to enhance the KG and pay homage to the Father of Library Science on the hundredth anniversary of his revitalizing the LIS domain through his enduring participation.

Recent initiatives known as Future Internet Architectures (FIAs) seek to redesign the Internet to improve performance, scalability, and security. However, some governments perceive Internet access as a threat to their political standing and engage in widespread network surveillance and censorship. In this paper, we provide an in-depth analysis into the designs of prominent FIAs, to help understand of how FIAs impact surveillance and censorship abilities. Then, we survey the applicability of privacy-enhancing technologies to FIAs. We conclude by providing guidelines for future research into novel FIA-based privacy-enhancing technologies, and recommendations to guide the evaluation of these technologies.

We provide a Copula-based approach to test the exogeneity of instrumental variables in linear regression models. We show that the exogeneity of instrumental variables is equivalent to the exogeneity of their standard normal transformations with the same CDF value. Then, we establish a Wald test for the exogeneity of the instrumental variables. We demonstrate the performance of our test using simulation studies. Our simulations show that if the instruments are actually endogenous, our test rejects the exogeneity hypothesis approximately 93% of the time at the 5% significance level. Conversely, when instruments are truly exogenous, it dismisses the exogeneity assumption less than 30% of the time on average for data with 200 observations and less than 2% of the time for data with 1,000 observations. Our results demonstrate our test's effectiveness, offering significant value to applied econometricians.

Image generation using generative AI is rapidly becoming a major new source of visual media, with billions of AI generated images created using diffusion models such as Stable Diffusion and Midjourney over the last few years. In this paper we collect and analyse over 3 million prompts and the images they generate. Using natural language processing, topic analysis and visualisation methods we aim to understand collectively how people are using text prompts, the impact of these systems on artists, and more broadly on the visual cultures they promote. Our study shows that prompting focuses largely on surface aesthetics, reinforcing cultural norms, popular conventional representations and imagery. We also find that many users focus on popular topics (such as making colouring books, fantasy art, or Christmas cards), suggesting that the dominant use for the systems analysed is recreational rather than artistic.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司