We propose and deploy an approach to continually train an instruction-following agent from feedback provided by users during collaborative interactions. During interaction, human users instruct an agent using natural language, and provide realtime binary feedback as they observe the agent following their instructions. We design a contextual bandit learning approach, converting user feedback to immediate reward. We evaluate through thousands of human-agent interactions, demonstrating 15.4% absolute improvement in instruction execution accuracy over time. We also show our approach is robust to several design variations, and that the feedback signal is roughly equivalent to the learning signal of supervised demonstration data.
Hyperspectral Imaging comprises excessive data consequently leading to significant challenges for data processing, storage and transmission. Compressive Sensing has been used in the field of Hyperspectral Imaging as a technique to compress the large amount of data. This work addresses the recovery of hyperspectral images 2.5x compressed. A comparative study in terms of the accuracy and the performance of the convex FISTA/ADMM in addition to the greedy gOMP/BIHT/CoSaMP recovery algorithms is presented. The results indicate that the algorithms recover successfully the compressed data, yet the gOMP algorithm achieves superior accuracy and faster recovery in comparison to the other algorithms at the expense of high dependence on unknown sparsity level of the data to recover.
Social relations are leveraged to tackle the sparsity issue of user-item interaction data in recommendation under the assumption of social homophily. However, social recommendation paradigms predominantly focus on homophily based on user preferences. While social information can enhance recommendations, its alignment with user preferences is not guaranteed, thereby posing the risk of introducing informational redundancy. We empirically discover that social graphs in real recommendation data exhibit low preference-aware homophily, which limits the effect of social recommendation models. To comprehensively extract preference-aware homophily information latent in the social graph, we propose Social Heterophily-alleviating Rewiring (SHaRe), a data-centric framework for enhancing existing graph-based social recommendation models. We adopt Graph Rewiring technique to capture and add highly homophilic social relations, and cut low homophilic (or heterophilic) relations. To better refine the user representations from reliable social relations, we integrate a contrastive learning method into the training of SHaRe, aiming to calibrate the user representations for enhancing the result of Graph Rewiring. Experiments on real-world datasets show that the proposed framework not only exhibits enhanced performances across varying homophily ratios but also improves the performance of existing state-of-the-art (SOTA) social recommendation models.
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: //github.com/Ravoxsg/efficient_unified_crs.
Recommendation systems aim to provide users with relevant suggestions, but often lack interpretability and fail to capture higher-level semantic relationships between user behaviors and profiles. In this paper, we propose a novel approach that leverages large language models (LLMs) to construct personalized reasoning graphs. These graphs link a user's profile and behavioral sequences through causal and logical inferences, representing the user's interests in an interpretable way. Our approach, LLM reasoning graphs (LLMRG), has four components: chained graph reasoning, divergent extension, self-verification and scoring, and knowledge base self-improvement. The resulting reasoning graph is encoded using graph neural networks, which serves as additional input to improve conventional recommender systems, without requiring extra user or item information. Our approach demonstrates how LLMs can enable more logical and interpretable recommender systems through personalized reasoning graphs. LLMRG allows recommendations to benefit from both engineered recommendation systems and LLM-derived reasoning graphs. We demonstrate the effectiveness of LLMRG on benchmarks and real-world scenarios in enhancing base recommendation models.
When devising recommendation services, it is important to account for the interests of all content providers, encompassing not only newcomers but also minority demographic groups. In various instances, certain provider groups find themselves underrepresented in the item catalog, a situation that can influence recommendation results. Hence, platform owners often seek to regulate the exposure of these provider groups in the recommended lists. In this paper, we propose a novel cost-sensitive approach designed to guarantee these target exposure levels in pairwise recommendation models. This approach quantifies, and consequently mitigate, the discrepancies between the volume of recommendations allocated to groups and their contribution in the item catalog, under the principle of equity. Our results show that this approach, while aligning groups exposure with their assigned levels, does not compromise to the original recommendation utility. Source code and pre-processed data can be retrieved at //github.com/alessandraperniciano/meta-learning-strategy-fair-provider-exposure.
Blockchains deploy Transaction Fee Mechanisms (TFMs) to determine which user transactions to include in blocks and determine their payments (i.e., transaction fees). Increasing demand and scarce block resources have led to high user transaction fees. As these blockchains are a public resource, it may be preferable to reduce these transaction fees. To this end, we introduce Transaction Fee Redistribution Mechanisms (TFRMs) -- redistributing VCG payments collected from such TFM as rebates to minimize transaction fees. Classic redistribution mechanisms (RMs) achieve this while ensuring Allocative Efficiency (AE) and User Incentive Compatibility (UIC). Our first result shows the non-triviality of applying RM in TFMs. More concretely, we prove that it is impossible to reduce transaction fees when (i) transactions that are not confirmed do not receive rebates and (ii) the miner can strategically manipulate the mechanism. Driven by this, we propose \emph{Robust} TFRM (\textsf{R-TFRM}): a mechanism that compromises on an honest miner's individual rationality to guarantee strictly positive rebates to the users. We then introduce \emph{robust} and \emph{rational} TFRM (\textsf{R}$^2$\textsf{-TFRM}) that uses trusted on-chain randomness that additionally guarantees miner's individual rationality (in expectation) and strictly positive rebates. Our results show that TFRMs provide a promising new direction for reducing transaction fees in public blockchains.
Mining users' intents plays a crucial role in sequential recommendation. The recent approach, ICLRec, was introduced to extract underlying users' intents using contrastive learning and clustering. While it has shown effectiveness, the existing method suffers from complex and cumbersome alternating optimization, leading to two main issues. Firstly, the separation of representation learning and clustering optimization within a generalized expectation maximization (EM) framework often results in sub-optimal performance. Secondly, performing clustering on the entire dataset hampers scalability for large-scale industry data. To address these challenges, we propose a novel intent learning method called \underline{ODCRec}, which integrates representation learning into an \underline{O}nline \underline{D}ifferentiable \underline{C}lustering framework for \underline{Rec}ommendation. Specifically, we encode users' behavior sequences and initialize the cluster centers as differentiable network parameters. Additionally, we design a clustering loss that guides the networks to differentiate between different cluster centers and pull similar samples towards their respective cluster centers. This allows simultaneous optimization of recommendation and clustering using mini-batch data. Moreover, we leverage the learned cluster centers as self-supervision signals for representation learning, resulting in further enhancement of recommendation performance. Extensive experiments conducted on open benchmarks and industry data validate the superiority, effectiveness, and efficiency of our proposed ODCRec method. Code is available at: //github.com/yueliu1999/ELCRec.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.
The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.