亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While Reinforcement Learning (RL) has made great strides towards solving increasingly complicated problems, many algorithms are still brittle to even slight changes in environments. Contextual Reinforcement Learning (cRL) provides a theoretical framework to model such changes in a principled manner, thereby enabling flexible, precise and interpretable task specification and generation. Thus, cRL is an important formalization for studying generalization in RL. In this work, we reason about solving cRL in theory and practice. We show that theoretically optimal behavior in contextual Markov Decision Processes requires explicit context information. In addition, we empirically explore context-based task generation, utilizing context information in training and propose cGate, our state-modulating policy architecture. To this end, we introduce the first benchmark library designed for generalization based on cRL extensions of popular benchmarks, CARL. In short: Context matters!

相關內容

In this paper we introduce a new approach to discrete-time semi-Markov decision processes based on the sojourn time process. Different characterizations of discrete-time semi-Markov processes are exploited and decision processes are constructed by their means. With this new approach, the agent is allowed to consider different actions depending also on the sojourn time of the process in the current state. A numerical method based on $Q$-learning algorithms for finite horizon reinforcement learning and stochastic recursive relations is investigated. Finally, we consider two toy examples: one in which the reward depends on the sojourn-time, according to the gambler's fallacy; the other in which the environment is semi-Markov even if the reward function does not depend on the sojourn time. These are used to carry on some numerical evaluations on the previously presented $Q$-learning algorithm and on a different naive method based on deep reinforcement learning.

Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.

Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.

We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.

Driving safely requires multiple capabilities from human and intelligent agents, such as the generalizability to unseen environments, the safety awareness of the surrounding traffic, and the decision-making in complex multi-agent settings. Despite the great success of Reinforcement Learning (RL), most of the RL research works investigate each capability separately due to the lack of integrated environments. In this work, we develop a new driving simulation platform called MetaDrive to support the research of generalizable reinforcement learning algorithms for machine autonomy. MetaDrive is highly compositional, which can generate an infinite number of diverse driving scenarios from both the procedural generation and the real data importing. Based on MetaDrive, we construct a variety of RL tasks and baselines in both single-agent and multi-agent settings, including benchmarking generalizability across unseen scenes, safe exploration, and learning multi-agent traffic. The generalization experiments conducted on both procedurally generated scenarios and real-world scenarios show that increasing the diversity and the size of the training set leads to the improvement of the generalizability of the RL agents. We further evaluate various safe reinforcement learning and multi-agent reinforcement learning algorithms in MetaDrive environments and provide the benchmarks. Source code, documentation, and demo video are available at //metadriverse.github.io/metadrive . More research projects based on MetaDrive simulator are listed at //metadriverse.github.io

Controlled text generation tasks such as unsupervised text style transfer have increasingly adopted the use of Reinforcement Learning (RL). A major challenge in applying RL to such tasks is the sparse reward, which is available only after the full text is generated. Sparse rewards, combined with a large action space make RL training sample-inefficient and difficult to converge. Recently proposed reward-shaping strategies to address this issue have shown only negligible gains. In contrast, this work proposes a novel approach that provides dense rewards to each generated token. We evaluate our approach by its usage in unsupervised text style transfer. Averaged across datasets, our style transfer system improves upon current state-of-art systems by 21\% on human evaluation and 12\% on automatic evaluation. Upon ablated comparison with the current reward shaping approach (the `roll-out strategy'), using dense rewards improves the overall style transfer quality by 22\% based on human evaluation. Further the RL training is 2.5 times as sample efficient, and 7 times faster.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司