Evaluation of the resistance of implemented cryptographic algorithms against SCA attacks, as well as detecting of SCA leakage sources at an early stage of the design process, is important for an efficient re-design of the implementation. Thus, effective SCA methods that do not depend on the key processed in the cryptographic operations are beneficially and can be a part of the efficient design methodology for implementing cryptographic approaches. In this work we compare two different methods that are used to analyse power traces of elliptic curve point multiplications. The first method the comparison to the mean is a simple method based on statistical analysis. The second one is K-means - the mostly used unsupervised machine learning algorithm for data clustering. The results of our early work showed that the machine learning algorithm was not superior to the simple approach. In this work we concentrate on the comparison of the attack results using both analysis methods with the goal to understand their benefits and drawbacks. Our results show that the comparison to the mean works properly only if the scalar processed during the attacked kP execution is balanced, i.e. if the number of '1' in the scalar k is about as high as the number of '0'. In contrast to this, K-means is effective also if the scalar is highly unbalanced. It is still effective even if the scalar k contains only a very small number of '0' bits.
Sward species composition estimation is a tedious one. Herbage must be collected in the field, manually separated into components, dried and weighed to estimate species composition. Deep learning approaches using neural networks have been used in previous work to propose faster and more cost efficient alternatives to this process by estimating the biomass information from a picture of an area of pasture alone. Deep learning approaches have, however, struggled to generalize to distant geographical locations and necessitated further data collection to retrain and perform optimally in different climates. In this work, we enhance the deep learning solution by reducing the need for ground-truthed (GT) images when training the neural network. We demonstrate how unsupervised contrastive learning can be used in the sward composition prediction problem and compare with the state-of-the-art on the publicly available GrassClover dataset collected in Denmark as well as a more recent dataset from Ireland where we tackle herbage mass and height estimation.
In the realm of unsupervised learning, Bayesian nonparametric mixture models, exemplified by the Dirichlet Process Mixture Model (DPMM), provide a principled approach for adapting the complexity of the model to the data. Such models are particularly useful in clustering tasks where the number of clusters is unknown. Despite their potential and mathematical elegance, however, DPMMs have yet to become a mainstream tool widely adopted by practitioners. This is arguably due to a misconception that these models scale poorly as well as the lack of high-performance (and user-friendly) software tools that can handle large datasets efficiently. In this paper we bridge this practical gap by proposing a new, easy-to-use, statistical software package for scalable DPMM inference. More concretely, we provide efficient and easily-modifiable implementations for high-performance distributed sampling-based inference in DPMMs where the user is free to choose between either a multiple-machine, multiple-core, CPU implementation (written in Julia) and a multiple-stream GPU implementation (written in CUDA/C++). Both the CPU and GPU implementations come with a common (and optional) python wrapper, providing the user with a single point of entry with the same interface. On the algorithmic side, our implementations leverage a leading DPMM sampler from (Chang and Fisher III, 2013). While Chang and Fisher III's implementation (written in MATLAB/C++) used only CPU and was designed for a single multi-core machine, the packages we proposed here distribute the computations efficiently across either multiple multi-core machines or across mutiple GPU streams. This leads to speedups, alleviates memory and storage limitations, and lets us fit DPMMs to significantly larger datasets and of higher dimensionality than was possible previously by either (Chang and Fisher III, 2013) or other DPMM methods.
Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.
In this paper, we propose a novel design, called MixNN, for protecting deep learning model structure and parameters. The layers in a deep learning model of MixNN are fully decentralized. It hides communication address, layer parameters and operations, and forward as well as backward message flows among non-adjacent layers using the ideas from mix networks. MixNN has following advantages: 1) an adversary cannot fully control all layers of a model including the structure and parameters, 2) even some layers may collude but they cannot tamper with other honest layers, 3) model privacy is preserved in the training phase. We provide detailed descriptions for deployment. In one classification experiment, we compared a neural network deployed in a virtual machine with the same one using the MixNN design on the AWS EC2. The result shows that our MixNN retains less than 0.001 difference in terms of classification accuracy, while the whole running time of MixNN is about 7.5 times slower than the one running on a single virtual machine.
A High-dimensional and sparse (HiDS) matrix is frequently encountered in a big data-related application like an e-commerce system or a social network services system. To perform highly accurate representation learning on it is of great significance owing to the great desire of extracting latent knowledge and patterns from it. Latent factor analysis (LFA), which represents an HiDS matrix by learning the low-rank embeddings based on its observed entries only, is one of the most effective and efficient approaches to this issue. However, most existing LFA-based models perform such embeddings on a HiDS matrix directly without exploiting its hidden graph structures, thereby resulting in accuracy loss. To address this issue, this paper proposes a graph-incorporated latent factor analysis (GLFA) model. It adopts two-fold ideas: 1) a graph is constructed for identifying the hidden high-order interaction (HOI) among nodes described by an HiDS matrix, and 2) a recurrent LFA structure is carefully designed with the incorporation of HOI, thereby improving the representa-tion learning ability of a resultant model. Experimental results on three real-world datasets demonstrate that GLFA outperforms six state-of-the-art models in predicting the missing data of an HiDS matrix, which evidently supports its strong representation learning ability to HiDS data.
Lately, several benchmark studies have shown that the state of the art in some of the sub-fields of machine learning actually has not progressed despite progress being reported in the literature. The lack of progress is partly caused by the irreproducibility of many model comparison studies. Model comparison studies are conducted that do not control for many known sources of irreproducibility. This leads to results that cannot be verified by third parties. Our objective is to provide an overview of the sources of irreproducibility that are reported in the literature. We review the literature to provide an overview and a taxonomy in addition to a discussion on the identified sources of irreproducibility. Finally, we identify three lines of further inquiry.
This paper is devoted to a practical method for ferroalloys consumption modeling and optimization. We consider the problem of selecting the optimal process control parameters based on the analysis of historical data from sensors. We developed approach, which predicts results of chemical reactions and give ferroalloys consumption recommendation. The main features of our method are easy interpretation and noise resistance. Our approach is based on k-means clustering algorithm, decision trees and linear regression. The main idea of the method is to identify situations where processes go similarly. For this, we propose using a k-means based dataset clustering algorithm and a classification algorithm to determine the cluster. This algorithm can be also applied to various technological processes, in this article, we demonstrate its application in metallurgy. To test the application of the proposed method, we used it to optimize ferroalloys consumption in Basic Oxygen Furnace steelmaking when finishing steel in a ladle furnace. The minimum required element content for a given steel grade was selected as the predictive model's target variable, and the required amount of the element to be added to the melt as the optimized variable. Keywords: Clustering, Machine Learning, Linear Regression, Steelmaking, Optimization, Gradient Boosting, Artificial Intelligence, Decision Trees, Recommendation services
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.