Dataflow architectures are growing in popularity due to their potential to mitigate the challenges posed by the memory wall inherent to the Von Neumann architecture. At the same time, high-level synthesis (HLS) has demonstrated its efficacy as a design methodology for generating efficient dataflow architectures within a short development cycle. However, existing HLS tools rely on developers to explore the vast dataflow design space, ultimately leading to suboptimal designs. This phenomenon is especially concerning as the size of the HLS design grows. To tackle these challenges, we introduce HIDA, a new scalable and hierarchical HLS framework that can systematically convert an algorithmic description into a dataflow implementation on hardware. We first propose a collection of efficient and versatile dataflow representations for modeling the hierarchical dataflow structure. Capitalizing on these representations, we develop an automated optimizer that decomposes the dataflow optimization problem into multiple levels based on the inherent dataflow hierarchy. Using FPGAs as an evaluation platform, working with a set of neural networks modeled in PyTorch, HIDA achieves up to 8.54$\times$ higher throughput compared to the state-of-the-art (SOTA) HLS optimization tool. Furthermore, despite being fully automated and able to handle various applications, HIDA achieves 1.29$\times$ higher throughput over the SOTA RTL-based neural network accelerators on an FPGA.
Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. However, most existing approaches only exploit keyword burstiness or network structures to detect unspecified events. Thus, they often need help identifying unknown events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, irregular language, and variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this paper, we propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data. In particular, we leverage contextual and linguistic knowledge to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.
Online design communities, where members exchange free-form views on others' designs, offer a space for beginners to learn visual design. However, the content of these communities is often unorganized for learners, containing many redundancies and irrelevant comments. In this paper, we propose a computational approach for leveraging online design communities to run a conversational agent that assists informal learning of visual elements (e.g., color and space). Our method extracts critiques, suggestions, and rationales on visual elements from comments. We present DesignQuizzer, which asks questions about visual design in UI examples and provides structured comment summaries. Two user studies demonstrate the engagement and usefulness of DesignQuizzer compared with the baseline (reading reddit.com/r/UI_design). We also showcase how effectively novices can apply what they learn with DesignQuizzer in a design critique task and a visual design task. We discuss how to use our approach with other communities and offer design considerations for community-powered learning support tools.
The robustness of the Kalman filter to double talk and its rapid convergence make it a popular approach for addressing acoustic echo cancellation (AEC) challenges. However, the inability to model nonlinearity and the need to tune control parameters cast limitations on such adaptive filtering algorithms. In this paper, we integrate the frequency domain Kalman filter (FDKF) and deep neural networks (DNNs) into a hybrid method, called NeuralKalman, to leverage the advantages of deep learning and adaptive filtering algorithms. Specifically, we employ a DNN to estimate nonlinearly distorted far-end signals, a transition factor, and the nonlinear transition function in the state equation of the FDKF algorithm. Experimental results show that the proposed NeuralKalman improves the performance of FDKF significantly and outperforms strong baseline methods.
Unsupervised depth completion methods are trained by minimizing sparse depth and image reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality have seen even less as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion. This is achieved by reversing, or ``undo"-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs. This simple yet effective strategy allows us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets where we improve upon three existing methods by an average of 11.75% across both datasets.
Semantic segmentation benchmarks in the realm of autonomous driving are dominated by large pre-trained transformers, yet their widespread adoption is impeded by substantial computational costs and prolonged training durations. To lift this constraint, we look at efficient semantic segmentation from a perspective of comprehensive knowledge distillation and consider to bridge the gap between multi-source knowledge extractions and transformer-specific patch embeddings. We put forward the Transformer-based Knowledge Distillation (TransKD) framework which learns compact student transformers by distilling both feature maps and patch embeddings of large teacher transformers, bypassing the long pre-training process and reducing the FLOPs by >85.0%. Specifically, we propose two fundamental and two optimization modules: (1) Cross Selective Fusion (CSF) enables knowledge transfer between cross-stage features via channel attention and feature map distillation within hierarchical transformers; (2) Patch Embedding Alignment (PEA) performs dimensional transformation within the patchifying process to facilitate the patch embedding distillation; (3) Global-Local Context Mixer (GL-Mixer) extracts both global and local information of a representative embedding; (4) Embedding Assistant (EA) acts as an embedding method to seamlessly bridge teacher and student models with the teacher's number of channels. Experiments on Cityscapes, ACDC, NYUv2, and Pascal VOC2012 datasets show that TransKD outperforms state-of-the-art distillation frameworks and rivals the time-consuming pre-training method. The source code is publicly available at //github.com/RuipingL/TransKD.
With the rapid development of Quantum Machine Learning, quantum neural networks (QNN) have experienced great advancement in the past few years, harnessing the advantages of quantum computing to significantly speed up classical machine learning tasks. Despite their increasing popularity, the quantum neural network is quite counter-intuitive and difficult to understand, due to their unique quantum-specific layers (e.g., data encoding and measurement) in their architecture. It prevents QNN users and researchers from effectively understanding its inner workings and exploring the model training status. To fill the research gap, we propose VIOLET, a novel visual analytics approach to improve the explainability of quantum neural networks. Guided by the design requirements distilled from the interviews with domain experts and the literature survey, we developed three visualization views: the Encoder View unveils the process of converting classical input data into quantum states, the Ansatz View reveals the temporal evolution of quantum states in the training process, and the Feature View displays the features a QNN has learned after the training process. Two novel visual designs, i.e., satellite chart and augmented heatmap, are proposed to visually explain the variational parameters and quantum circuit measurements respectively. We evaluate VIOLET through two case studies and in-depth interviews with 12 domain experts. The results demonstrate the effectiveness and usability of VIOLET in helping QNN users and developers intuitively understand and explore quantum neural networks
In Ultrasound Localization Microscopy (ULM),achieving high-resolution images relies on the precise localization of contrast agent particles across consecutive beam-formed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF signals. Our approach involves a custom super-resolution DNN using learned feature channel shuffling and a novel semi-global convolutional sampling block tailored for reliable and accurate wavefront localization. Additionally, we introduce a geometric point transformation that facilitates seamless mapping between RF and B-mode coordinate space. To understand the impact of beamforming on ULM, we validate the effectiveness of our method by conducting an extensive comparison with State-Of-The-Art (SOTA) techniques. We present the inaugural in vivo results from an RF-trained DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain gap between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at //github.com/hahnec/rf-ulm.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.