Let $G$ be a large (simple, unlabeled) dense graph on $n$ vertices. Suppose that we only know, or can estimate, the empirical distribution of the number of subgraphs $F$ that each vertex in $G$ participates in, for some fixed small graph $F$. How many other graphs would look essentially the same to us, i.e., would have a similar local structure? In this paper, we derive upper and lower bounds on the number of graphs whose empirical distribution lies close (in the Kolmogorov-Smirnov distance) to that of $G$. Our bounds are given as solutions to a maximum entropy problem on random graphs of a fixed size $k$ that does not depend on $n$, under $d$ global density constraints. The bounds are asymptotically close, with a gap that vanishes with $d$ at a rate that depends on the concentration function of the center of the Kolmogorov-Smirnov ball.
We investigate the fundamental optimization question of minimizing a target function $f$, whose gradients are expensive to compute or have limited availability, given access to some auxiliary side function $h$ whose gradients are cheap or more available. This formulation captures many settings of practical relevance, such as i) re-using batches in SGD, ii) transfer learning, iii) federated learning, iv) training with compressed models/dropout, etc. We propose two generic new algorithms that apply in all these settings and prove that we can benefit from this framework using only an assumption on the Hessian similarity between the target and side information. A benefit is obtained when this similarity measure is small, we also show a potential benefit from stochasticity when the auxiliary noise is correlated with that of the target function.
Low Rank Parity Check (LRPC) codes form a class of rank-metric error-correcting codes that was purposely introduced to design public-key encryption schemes. An LRPC code is defined from a parity check matrix whose entries belong to a relatively low dimensional vector subspace of a large finite field. This particular algebraic feature can then be exploited to correct with high probability rank errors when the parameters are appropriately chosen. In this paper, we present theoretical upper-bounds on the probability that the LRPC decoding algorithm fails.
The substitution lemma is a renowned theorem within the realm of lambda-calculus theory and concerns the interactional behaviour of the metasubstitution operation. In this work, we augment the lambda-calculus's grammar with an uninterpreted explicit substitution operator, which allows the use of our framework for different calculi with explicit substitutions. Our primary contribution lies in verifying that, despite these modifications, the substitution lemma continues to remain valid. This confirmation was achieved using the Coq proof assistant. Our formalization methodology employs a nominal approach, which provides a direct implementation of the alpha-equivalence concept. The strategy involved in variable renaming within the proofs presents a challenge, specially on ensuring an exploration of the implications of our extension to the grammar of the lambda-calculus.
Human perception inherently operates in a multimodal manner. Similarly, as machines interpret the empirical world, their learning processes ought to be multimodal. The recent, remarkable successes in empirical multimodal learning underscore the significance of understanding this paradigm. Yet, a solid theoretical foundation for multimodal learning has eluded the field for some time. While a recent study by Lu (2023) has shown the superior sample complexity of multimodal learning compared to its unimodal counterpart, another basic question remains: does multimodal learning also offer computational advantages over unimodal learning? This work initiates a study on the computational benefit of multimodal learning. We demonstrate that, under certain conditions, multimodal learning can outpace unimodal learning exponentially in terms of computation. Specifically, we present a learning task that is NP-hard for unimodal learning but is solvable in polynomial time by a multimodal algorithm. Our construction is based on a novel modification to the intersection of two half-spaces problem.
We present the first in-depth empirical characterization of the costs of trading on a decentralized exchange (DEX). Using quoted prices from the Uniswap Labs interface for two pools -- USDC-ETH (5bps) and PEPE-ETH (30bps) -- we evaluate the efficiency of trading on DEXs. Our main tool is slippage -- the difference between the realized execution price of a trade, and its quoted price -- which we breakdown into its benign and adversarial components. We also present an alternative way to quantify and identify slippage due to adversarial reordering of transactions, which we call reordering slippage, that does not require quoted prices or mempool data to calculate. We find that the composition of transaction costs varies tremendously with the trade's characteristics. Specifically, while for small swaps, gas costs dominate costs, for large swaps price-impact and slippage account for the majority of it. Moreover, when trading PEPE, a popular 'memecoin', the probability of adversarial slippage is about 80% higher than when trading a mature asset like USDC. Overall, our results provide preliminary evidence that DEXs offer a compelling trust-less alternative to centralized exchanges for trading digital assets.
6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. This paper aims to: (i) shed light on these important value indicators and their relationship with the conventional key performance indicators, and (ii) unveil the dual nature of 6G in relation to these key value indicators (i.e., ensuring operation according to the values and enabling services that affect the values).
We explore the space of matrix-generated (0, m, 2)-nets and (0, 2)-sequences in base 2, also known as digital dyadic nets and sequences. In computer graphics, they are arguably leading the competition for use in rendering. We provide a complete characterization of the design space and count the possible number of constructions with and without considering possible reorderings of the point set. Based on this analysis, we then show that every digital dyadic net can be reordered into a sequence, together with a corresponding algorithm. Finally, we present a novel family of self-similar digital dyadic sequences, to be named $\xi$-sequences, that spans a subspace with fewer degrees of freedom. Those $\xi$-sequences are extremely efficient to sample and compute, and we demonstrate their advantages over the classic Sobol (0, 2)-sequence.
Multi-modal robots expand their operations from one working medium to another, land to air for example. The majorities of multi-modal robots mainly refer to platforms that operate in two different media. However, for all-terrain tasks, there are seldom research to date in the literature. Generally, locomotions in different working media, i.e. land, water and air, require different propelling actuators, and thus the triphibian system becomes bulky. To overcome this challenge, we proposed a triphibian robot and provide the robot with driving forces to perform all-terrain operations in an efficient way. A morphable mechanism is designed to enable the transition between different motion modes, and specifically a cylindrical body is implemented as the rolling mechanism in land mode. Detailed design principles of different mechanisms and the transition between various locomotion modes are analyzed. Finally, a triphibian robot prototype is fabricated and tested in various working media with both mono-modal and multi-modal functionalities. Experiments have verified our platform, and the results show promising adaptions in future exploration tasks in various working scenarios.
Recent experiments have shown that, often, when training a neural network with gradient descent (GD) with a step size $\eta$, the operator norm of the Hessian of the loss grows until it approximately reaches $2/\eta$, after which it fluctuates around this value. The quantity $2/\eta$ has been called the "edge of stability" based on consideration of a local quadratic approximation of the loss. We perform a similar calculation to arrive at an "edge of stability" for Sharpness-Aware Minimization (SAM), a variant of GD which has been shown to improve its generalization. Unlike the case for GD, the resulting SAM-edge depends on the norm of the gradient. Using three deep learning training tasks, we see empirically that SAM operates on the edge of stability identified by this analysis.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.