The long-standing theory that a colour-naming system evolves under the dual pressure of efficient communication and perceptual mechanism is supported by more and more linguistic studies including the analysis of four decades' diachronic data from the Nafaanra language. This inspires us to explore whether artificial intelligence could evolve and discover a similar colour-naming system via optimising the communication efficiency represented by high-level recognition performance. Here, we propose a novel colour quantisation transformer, CQFormer, that quantises colour space while maintaining the accuracy of machine recognition on the quantised images. Given an RGB image, Annotation Branch maps it into an index map before generating the quantised image with a colour palette, meanwhile the Palette Branch utilises a key-point detection way to find proper colours in palette among whole colour space. By interacting with colour annotation, CQFormer is able to balance both the machine vision accuracy and colour perceptual structure such as distinct and stable colour distribution for discovered colour system. Very interestingly, we even observe the consistent evolution pattern between our artificial colour system and basic colour terms across human languages. Besides, our colour quantisation method also offers an efficient quantisation method that effectively compresses the image storage while maintaining a high performance in high-level recognition tasks such as classification and detection. Extensive experiments demonstrate the superior performance of our method with extremely low bit-rate colours. We will release the source code soon.
We present a large, multilingual study into how vision constrains linguistic choice, covering four languages and five linguistic properties, such as verb transitivity or use of numerals. We propose a novel method that leverages existing corpora of images with captions written by native speakers, and apply it to nine corpora, comprising 600k images and 3M captions. We study the relation between visual input and linguistic choices by training classifiers to predict the probability of expressing a property from raw images, and find evidence supporting the claim that linguistic properties are constrained by visual context across languages. We complement this investigation with a corpus study, taking the test case of numerals. Specifically, we use existing annotations (number or type of objects) to investigate the effect of different visual conditions on the use of numeral expressions in captions, and show that similar patterns emerge across languages. Our methods and findings both confirm and extend existing research in the cognitive literature. We additionally discuss possible applications for language generation.
[Context and motivation] Incompleteness in natural-language requirements is a challenging problem. [Question/problem] A common technique for detecting incompleteness in requirements is checking the requirements against external sources. With the emergence of language models such as BERT, an interesting question is whether language models are useful external sources for finding potential incompleteness in requirements. [Principal ideas/results] We mask words in requirements and have BERT's masked language model (MLM) generate contextualized predictions for filling the masked slots. We simulate incompleteness by withholding content from requirements and measure BERT's ability to predict terminology that is present in the withheld content but absent in the content disclosed to BERT. [Contribution] BERT can be configured to generate multiple predictions per mask. Our first contribution is to determine how many predictions per mask is an optimal trade-off between effectively discovering omissions in requirements and the level of noise in the predictions. Our second contribution is devising a machine learning-based filter that post-processes predictions made by BERT to further reduce noise. We empirically evaluate our solution over 40 requirements specifications drawn from the PURE dataset [1]. Our results indicate that: (1) predictions made by BERT are highly effective at pinpointing terminology that is missing from requirements, and (2) our filter can substantially reduce noise from the predictions, thus making BERT a more compelling aid for improving completeness in requirements.
Although the distortion correction of fisheye images has been extensively studied, the correction of fisheye videos is still an elusive challenge. For different frames of the fisheye video, the existing image correction methods ignore the correlation of sequences, resulting in temporal jitter in the corrected video. To solve this problem, we propose a temporal weighting scheme to get a plausible global optical flow, which mitigates the jitter effect by progressively reducing the weight of frames. Subsequently, we observe that the inter-frame optical flow of the video is facilitated to perceive the local spatial deformation of the fisheye video. Therefore, we derive the spatial deformation through the flows of fisheye and distorted-free videos, thereby enhancing the local accuracy of the predicted result. However, the independent correction for each frame disrupts the temporal correlation. Due to the property of fisheye video, a distorted moving object may be able to find its distorted-free pattern at another moment. To this end, a temporal deformation aggregator is designed to reconstruct the deformation correlation between frames and provide a reliable global feature. Our method achieves an end-to-end correction and demonstrates superiority in correction quality and stability compared with the SOTA correction methods.
There is growing interest in software migration as the development of software and society. Manually migrating projects between languages is error-prone and expensive. In recent years, researchers have begun to explore automatic program translation using supervised deep learning techniques by learning from large-scale parallel code corpus. However, parallel resources are scarce in the programming language domain, and it is costly to collect bilingual data manually. To address this issue, several unsupervised programming translation systems are proposed. However, these systems still rely on huge monolingual source code to train, which is very expensive. Besides, these models cannot perform well for translating the languages that are not seen during the pre-training procedure. In this paper, we propose SDA-Trans, a syntax and domain-aware model for program translation, which leverages the syntax structure and domain knowledge to enhance the cross-lingual transfer ability. SDA-Trans adopts unsupervised training on a smaller-scale corpus, including Python and Java monolingual programs. The experimental results on function translation tasks between Python, Java, and C++ show that SDA-Trans outperforms many large-scale pre-trained models, especially for unseen language translation.
Omnidirectional images (ODIs) have obtained lots of research interest for immersive experiences. Although ODIs require extremely high resolution to capture details of the entire scene, the resolutions of most ODIs are insufficient. Previous methods attempt to solve this issue by image super-resolution (SR) on equirectangular projection (ERP) images. However, they omit geometric properties of ERP in the degradation process, and their models can hardly generalize to real ERP images. In this paper, we propose Fisheye downsampling, which mimics the real-world imaging process and synthesizes more realistic low-resolution samples. Then we design a distortion-aware Transformer (OSRT) to modulate ERP distortions continuously and self-adaptively. Without a cumbersome process, OSRT outperforms previous methods by about 0.2dB on PSNR. Moreover, we propose a convenient data augmentation strategy, which synthesizes pseudo ERP images from plain images. This simple strategy can alleviate the over-fitting problem of large networks and significantly boost the performance of ODISR. Extensive experiments have demonstrated the state-of-the-art performance of our OSRT. Codes and models will be available at //github.com/Fanghua-Yu/OSRT.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.