亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the estimation problem in high-dimensional semi-supervised learning. Our goal is to investigate when and how the unlabeled data can be exploited to improve the estimation of the regression parameters of linear model in light of the fact that such linear models may be misspecified in data analysis. We first establish the minimax lower bound for parameter estimation in the semi-supervised setting, and show that this lower bound cannot be achieved by supervised estimators using the labeled data only. We propose an optimal semi-supervised estimator that can attain this lower bound and therefore improves the supervised estimators, provided that the conditional mean function can be consistently estimated with a proper rate. We further propose a safe semi-supervised estimator. We view it safe, because this estimator is always at least as good as the supervised estimators. We also extend our idea to the aggregation of multiple semi-supervised estimators caused by different misspecifications of the conditional mean function. Extensive numerical simulations and a real data analysis are conducted to illustrate our theoretical results.

相關內容

Several fundamental problems in science and engineering consist of global optimization tasks involving unknown high-dimensional (black-box) functions that map a set of controllable variables to the outcomes of an expensive experiment. Bayesian Optimization (BO) techniques are known to be effective in tackling global optimization problems using a relatively small number objective function evaluations, but their performance suffers when dealing with high-dimensional outputs. To overcome the major challenge of dimensionality, here we propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors. Using appropriate architecture choices, we show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces. In the context of BO, we augmented the proposed probabilistic surrogates with re-parameterized Monte Carlo approximations of multiple-point (parallel) acquisition functions, as well as methodological extensions for accommodating black-box constraints and multi-fidelity information sources. We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs, including a constrained optimization task involving shape optimization of rotor blades in turbo-machinery.

We study the problem of overcoming exponential sample complexity in differential entropy estimation under Gaussian convolutions. Specifically, we consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$, where $X$ and $Z$ are independent $D$-dimensional random variables with $X$ subgaussian with bounded second moment and $Z\sim\mathcal{N}(0,\sigma^2I_D)$. Under the absolute-error loss, the above problem has a parametric estimation rate of $\frac{c^D}{\sqrt{n}}$, which is exponential in data dimension $D$ and often problematic for applications. We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation, and show that the asymptotic error overhead vanishes as the unexplained variance of the PCA vanishes. This implies near-optimal performance for inherently low-dimensional structures embedded in high-dimensional spaces, including hidden-layer outputs of deep neural networks (DNN), which can be used to estimate mutual information (MI) in DNNs. We provide numerical results verifying the performance of our PCA approach on Gaussian and spiral data. We also apply our method to analysis of information flow through neural network layers (c.f. information bottleneck), with results measuring mutual information in a noisy fully connected network and a noisy convolutional neural network (CNN) for MNIST classification.

In this paper we consider the compression of asymptotically many i.i.d. copies of ensembles of mixed quantum states where the encoder has access to a side information system. The figure of merit is per-copy or local error criterion. Rate-distortion theory studies the trade-off between the compression rate and the per-copy error. The optimal trade-off can be characterized by the rate-distortion function, which is the best rate given a certain distortion. In this paper, we derive the rate-distortion function of mixed-state compression. The rate-distortion functions in the entanglement-assisted and unassisted scenarios are in terms of a single-letter mutual information quantity and the regularized entanglement of purification, respectively. For the general setting where the consumption of both communication and entanglement are considered, we present the full qubit-entanglement rate region. Our compression scheme covers both blind and visible compression models (and other models in between) depending on the structure of the side information system.

In this paper, we focus our attention on the high-dimensional double sparse linear regression, that is, a combination of element-wise and group-wise sparsity.To address this problem, we propose an IHT-style (iterative hard thresholding) procedure that dynamically updates the threshold at each step. We establish the matching upper and lower bounds for parameter estimation, showing the optimality of our proposal in the minimax sense. Coupled with a novel sparse group information criterion, we develop a fully adaptive procedure to handle unknown group sparsity and noise levels.We show that our adaptive procedure achieves optimal statistical accuracy with fast convergence. Finally, we demonstrate the superiority of our method by comparing it with several state-of-the-art algorithms on both synthetic and real-world datasets.

Treatment effect estimation under unconfoundedness is a fundamental task in causal inference. In response to the challenge of analyzing high-dimensional datasets collected in substantive fields such as epidemiology, genetics, economics, and social sciences, many methods for treatment effect estimation with high-dimensional nuisance parameters (the outcome regression and the propensity score) have been developed in recent years. However, it is still unclear what is the necessary and sufficient sparsity condition on the nuisance parameters for the treatment effect to be $\sqrt{n}$-estimable. In this paper, we propose a new Double-Calibration strategy that corrects the estimation bias of the nuisance parameter estimates computed by regularized high-dimensional techniques and demonstrate that the corresponding Doubly-Calibrated estimator achieves $1 / \sqrt{n}$-rate as long as one of the nuisance parameters is sparse with sparsity below $\sqrt{n} / \log p$, where $p$ denotes the ambient dimension of the covariates, whereas the other nuisance parameter can be arbitrarily complex and completely misspecified. The Double-Calibration strategy can also be applied to settings other than treatment effect estimation, e.g. regression coefficient estimation in the presence of diverging number of controls in a semiparametric partially linear model.

Most existing studies on linear bandits focus on the one-dimensional characterization of the overall system. While being representative, this formulation may fail to model applications with high-dimensional but favorable structures, such as the low-rank tensor representation for recommender systems. To address this limitation, this work studies a general tensor bandits model, where actions and system parameters are represented by tensors as opposed to vectors, and we particularly focus on the case that the unknown system tensor is low-rank. A novel bandit algorithm, coined TOFU (Tensor Optimism in the Face of Uncertainty), is developed. TOFU first leverages flexible tensor regression techniques to estimate low-dimensional subspaces associated with the system tensor. These estimates are then utilized to convert the original problem to a new one with norm constraints on its system parameters. Lastly, a norm-constrained bandit subroutine is adopted by TOFU, which utilizes these constraints to avoid exploring the entire high-dimensional parameter space. Theoretical analyses show that TOFU improves the best-known regret upper bound by a multiplicative factor that grows exponentially in the system order. A novel performance lower bound is also established, which further corroborates the efficiency of TOFU.

Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.

Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司