亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While many studies have looked at privacy properties of the Android and Google Play app ecosystem, comparatively much less is known about iOS and the Apple App Store, the most widely used ecosystem in the US. At the same time, there is increasing competition around privacy between these smartphone operating system providers. In this paper, we present a study of 24k Android and iOS apps from 2020 along several dimensions relating to user privacy. We find that third-party tracking and the sharing of unique user identifiers was widespread in apps from both ecosystems, even in apps aimed at children. In the children's category, iOS apps used much fewer advertising-related tracking than their Android counterparts, but could more often access children's location (by a factor of 7). Across all studied apps, our study highlights widespread potential violations of US, EU and UK privacy law, including 1) the use of third-party tracking without user consent, 2) the lack of parental consent before sharing PII with third-parties in children's apps, 3) the non-data-minimising configuration of tracking libraries, 4) the sending of personal data to countries without an adequate level of data protection, and 5) the continued absence of transparency around tracking, partly due to design decisions by Apple and Google. Overall, we find that neither platform is clearly better than the other for privacy across the dimensions we studied.

相關內容

Virtual reality (VR) is an emerging technology that enables new applications but also introduces privacy risks. In this paper, we focus on Oculus VR (OVR), the leading platform in the VR space and we provide the first comprehensive analysis of personal data exposed by OVR apps and the platform itself, from a combined networking and privacy policy perspective. We experimented with the Quest 2 headset and tested the most popular VR apps available on the official Oculus and the SideQuest app stores. We developed OVRseen, a methodology and system for collecting, analyzing, and comparing network traffic and privacy policies on OVR. On the networking side, we captured and decrypted network traffic of VR apps, which was previously not possible on OVR, and we extracted data flows, defined as <app, data type, destination>. Compared to the mobile and other app ecosystems, we found OVR to be more centralized and driven by tracking and analytics, rather than by third-party advertising. We show that the data types exposed by VR apps include personally identifiable information (PII), device information that can be used for fingerprinting, and VR-specific data types. By comparing the data flows found in the network traffic with statements made in the apps' privacy policies, we found that approximately 70% of OVR data flows were not properly disclosed. Furthermore, we extracted additional context from the privacy policies, and we observed that 69% of the data flows were used for purposes unrelated to the core functionality of apps.

The Unified Extensible Firmware Interface (UEFI) is a standardised interface between the firmware and the operating system used in all x86-based platforms over the past ten years. A side effect of the transition from conventional BIOS implementations to more complex and flexible implementations based on the UEFI was that it became easier for the malware to target BIOS in a widespread fashion, as these BIOS implementations are based on a common specification. This paper introduces Amaranth project - a solution to some of the contemporary security issues related to UEFI firmware. In this work we focused our attention on virtual machines as it allowed us to simplify the development of secure UEFI firmware. Security hardening of our firmware is achieved through several techniques, the most important of which are an operating system integrity checking mechanism (through snapshots) and overall firmware size reduction.

Blockchain technologies have been boosting the development of data-driven decentralized services in a wide range of fields. However, with the spirit of full transparency, many public blockchains expose all types of data to the public such as Ethereum. Besides, the on-chain persistence of large data is significantly expensive technically and economically. These issues lead to the difficulty of sharing fairly large private data while preserving attractive properties of public blockchains. Although direct encryption for on-chain data persistence can introduce confidentiality, new challenges such as key sharing, access control, and legal rights proving are still open. Meanwhile, cross-chain collaboration still requires secure and effective protocols, though decentralized storage systems such as IPFS bring the possibility for fairly large data persistence. In this paper, we propose Sunspot, a decentralized framework for privacy-preserving data sharing with access control on transparent public blockchains, to solve these issues. We also show the practicality and applicability of Sunspot by MyPub, a decentralized privacy-preserving publishing platform based on Sunspot. Furthermore, we evaluate the security, privacy, and performance of Sunspot through theoretical analysis and experiments.

Federated Learning (FL) is a paradigm for large-scale distributed learning which faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users. In this work, we propose a novel FL approach (DP-SCAFFOLD) to tackle these two challenges together by incorporating Differential Privacy (DP) constraints into the popular SCAFFOLD algorithm. We focus on the challenging setting where users communicate with a ''honest-but-curious'' server without any trusted intermediary, which requires to ensure privacy not only towards a third-party with access to the final model but also towards the server who observes all user communications. Using advanced results from DP theory, we establish the convergence of our algorithm for convex and non-convex objectives. Our analysis clearly highlights the privacy-utility trade-off under data heterogeneity, and demonstrates the superiority of DP-SCAFFOLD over the state-of-the-art algorithm DP-FedAvg when the number of local updates and the level of heterogeneity grow. Our numerical results confirm our analysis and show that DP-SCAFFOLD provides significant gains in practice.

Cloud computing comes with a lot of advanced features along with privacy and security problem. Smart meter data takes the benefit of cloud computing in the smart grid. User's privacy can be compromised by analyzing the smart meter data generated by household electrical appliances. The user loses control over the data while data is shifted to the cloud. This paper describes the issues under the privacy and security of smart meter data in the cloud environment. We also compare the existing approaches for preserving the privacy and security of smart meter data.

Google and Apple jointly introduced a digital contact tracing technology and an API called "exposure notification," to help health organizations and governments with contact tracing. The technology and its interplay with security and privacy constraints require investigation. In this study, we examine and analyze the security, privacy, and reliability of the technology with actual and typical scenarios (and expected typical adversary in mind), and quite realistic use cases. We do it in the context of Virginia's COVIDWISE app. This experimental analysis validates the properties of the system under the above conditions, a result that seems crucial for the peace of mind of the exposure notification technology adopting authorities, and may also help with the system's transparency and overall user trust.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

北京阿比特科技有限公司