亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum computing devices are believed to be powerful in solving the prime factorization problem, which is at the heart of widely deployed public-key cryptographic tools. However, the implementation of Shor's quantum factorization algorithm requires significant resources scaling linearly with the number size; taking into account an overhead that is required for quantum error correction the estimation is that 20 millions of (noisy) physical qubits are required for factoring 2048-bit RSA key in 8 hours. Recent proposal by Yan et. al. claims a possibility of solving the factorization problem with sublinear quantum resources. As we demonstrate in our work, this proposal lacks systematic analysis of the computational complexity of the classical part of the algorithm, which exploits the Schnorr's lattice-based approach. We provide several examples illustrating the need in additional resource analysis for the proposed quantum factorization algorithm.

相關內容

We propose and analyze an approximate message passing (AMP) algorithm for the matrix tensor product model, which is a generalization of the standard spiked matrix models that allows for multiple types of pairwise observations over a collection of latent variables. A key innovation for this algorithm is a method for optimally weighing and combining multiple estimates in each iteration. Building upon an AMP convergence theorem for non-separable functions, we prove a state evolution for non-separable functions that provides an asymptotically exact description of its performance in the high-dimensional limit. We leverage this state evolution result to provide necessary and sufficient conditions for recovery of the signal of interest. Such conditions depend on the singular values of a linear operator derived from an appropriate generalization of a signal-to-noise ratio for our model. Our results recover as special cases a number of recently proposed methods for contextual models (e.g., covariate assisted clustering) as well as inhomogeneous noise models.

This paper addresses a mathematically tractable model of the Prisoner's Dilemma using the framework of active inference. In this work, we design pairs of Bayesian agents that are tracking the joint game state of their and their opponent's choices in an Iterated Prisoner's Dilemma game. The specification of the agents' belief architecture in the form of a partially-observed Markov decision process allows careful and rigourous investigation into the dynamics of two-player gameplay, including the derivation of optimal conditions for phase transitions that are required to achieve certain game-theoretic steady states. We show that the critical time points governing the phase transition are linearly related to each other as a function of learning rate and the reward function. We then investigate the patterns that emerge when varying the agents' learning rates, as well as the relationship between the stochastic and deterministic solutions to the two-agent system.

This paper describes a method for using Grovers algorithm to create a quantum vector database, the database stores embeddings based on Controlled-S gates, which represent a binary numerical value. This value represents the embeddings value. The process of creating meaningful embeddings is handled by a classical computer and the search process is handled by the quantum computer. This search approach might be beneficial for a large enough database, or it could be seen as a very qubit-efficient (super dense) way for storing data on a quantum computer, since the proposed circuit stores many embeddings inside one quantum register simultaneously.

Computational optimal transport (OT) has recently emerged as a powerful framework with applications in various fields. In this paper we focus on a relaxation of the original OT problem, the entropic OT problem, which allows to implement efficient and practical algorithmic solutions, even in high dimensional settings. This formulation, also known as the Schr\"odinger Bridge problem, notably connects with Stochastic Optimal Control (SOC) and can be solved with the popular Sinkhorn algorithm. In the case of discrete-state spaces, this algorithm is known to have exponential convergence; however, achieving a similar rate of convergence in a more general setting is still an active area of research. In this work, we analyze the convergence of the Sinkhorn algorithm for probability measures defined on the $d$-dimensional torus $\mathbb{T}_L^d$, that admit densities with respect to the Haar measure of $\mathbb{T}_L^d$. In particular, we prove pointwise exponential convergence of Sinkhorn iterates and their gradient. Our proof relies on the connection between these iterates and the evolution along the Hamilton-Jacobi-Bellman equations of value functions obtained from SOC-problems. Our approach is novel in that it is purely probabilistic and relies on coupling by reflection techniques for controlled diffusions on the torus.

Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle: obtaining identification using fortuitous external aids, such as instrumental variables or proxies, or by means of the ID algorithm, using Markov restrictions on the full data distribution encoded in graphical causal models. In this paper we aim to develop a synthesis of the former and latter approaches to identification in causal inference to yield the most general identification algorithm in multivariate systems currently known -- the proximal ID algorithm. In addition to being able to obtain nonparametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustrate our approach by simulation studies and a data application.

Many real-world decision-making tasks require learning causal relationships between a set of variables. Traditional causal discovery methods, however, require that all variables are observed, which is often not feasible in practical scenarios. Without additional assumptions about the unobserved variables, it is not possible to recover any causal relationships from observational data. Fortunately, in many applied settings, additional structure among the confounders can be expected. In particular, pervasive confounding is commonly encountered and has been utilized for consistent causal estimation in linear causal models. In this paper, we present a provably consistent method to estimate causal relationships in the non-linear, pervasive confounding setting. The core of our procedure relies on the ability to estimate the confounding variation through a simple spectral decomposition of the observed data matrix. We derive a DAG score function based on this insight, prove its consistency in recovering a correct ordering of the DAG, and empirically compare it to previous approaches. We demonstrate improved performance on both simulated and real datasets by explicitly accounting for both confounders and non-linear effects.

The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below certain threshold. Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental limitation will disappear completely. We prove that with arbitrary fraction of the labels revealed, the detection problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based on optimization, to integrate label information with graph structures. Our work brings a new perspective to stochastic model of networks and semidefinite program research.

We study the randomized $n$-th minimal errors (and hence the complexity) of vector valued approximation. In a recent paper by the author [Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case (preprint)] a long-standing problem of Information-Based Complexity was solved: Is there a constant $c>0$ such that for all linear problems $\mathcal{P}$ the randomized non-adaptive and adaptive $n$-th minimal errors can deviate at most by a factor of $c$? That is, does the following hold for all linear $\mathcal{P}$ and $n\in {\mathbb N}$ \begin{equation*} e_n^{\rm ran-non} (\mathcal{P})\le ce_n^{\rm ran} (\mathcal{P}) \, {\bf ?} \end{equation*} The analysis of vector-valued mean computation showed that the answer is negative. More precisely, there are instances of this problem where the gap between non-adaptive and adaptive randomized minimal errors can be (up to log factors) of the order $n^{1/8}$. This raises the question about the maximal possible deviation. In this paper we show that for certain instances of vector valued approximation the gap is $n^{1/2}$ (again, up to log factors).

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司