亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.

相關內容

Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale. Here we demonstrate a scalable improvement to TTI that uses data assimilation (DA) on a contact network to learn about individual risks of infection. Network DA exploits diverse sources of health data together with proximity data from mobile devices. In simulations of the early COVID-19 epidemic in New York City, network DA identifies up to a factor 2 more infections than contact tracing when harnessing the same diagnostic test data. Targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI, provided compliance reaches around 75%. Network DA can be implemented by expanding the backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control the ongoing or future epidemics while minimizing economic disruption.

This paper studies decentralized federated learning algorithms in wireless IoT networks. The traditional parameter server architecture for federated learning faces some problems such as low fault tolerance, large communication overhead and inaccessibility of private data. To solve these problems, we propose a Decentralized-Wireless-Federated-Learning algorithm called DWFL. The algorithm works in a system where the workers are organized in a peer-to-peer and server-less manner, and the workers exchange their privacy preserving data with the anolog transmission scheme over wireless channels in parallel. With rigorous analysis, we show that DWFL satisfies $(\epsilon,\delta)$-differential privacy and the privacy budget per worker scale as $\mathcal{O}(\frac{1}{\sqrt{N}})$, in contrast with the constant budget in the orthogonal transmission approach. Furthermore, DWFL converges at the same rate of $\sqrt{\frac{1}{TN}}$ as the best known centralized algorithm with a central parameter server. Extensive experiments demonstrate that our algorithm DWFL also performs well in real settings.

The explosion of data collection has raised serious privacy concerns in users due to the possibility that sharing data may also reveal sensitive information. The main goal of a privacy-preserving mechanism is to prevent a malicious third party from inferring sensitive information while keeping the shared data useful. In this paper, we study this problem in the context of time series data and smart meters (SMs) power consumption measurements in particular. Although Mutual Information (MI) between private and released variables has been used as a common information-theoretic privacy measure, it fails to capture the causal time dependencies present in the power consumption time series data. To overcome this limitation, we introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting and propose a novel loss function. The optimization is then performed using an adversarial framework where two Recurrent Neural Networks (RNNs), referred to as the releaser and the adversary, are trained with opposite goals. Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario where an attacker has access to all the training data set used by the releaser, validate the proposed method and show the existing trade-offs between privacy and utility.

Data is the key factor to drive the development of machine learning (ML) during the past decade. However, high-quality data, in particular labeled data, is often hard and expensive to collect. To leverage large-scale unlabeled data, self-supervised learning, represented by contrastive learning, is introduced. The objective of contrastive learning is to map different views derived from a training sample (e.g., through data augmentation) closer in their representation space, while different views derived from different samples more distant. In this way, a contrastive model learns to generate informative representations for data samples, which are then used to perform downstream ML tasks. Recent research has shown that machine learning models are vulnerable to various privacy attacks. However, most of the current efforts concentrate on models trained with supervised learning. Meanwhile, data samples' informative representations learned with contrastive learning may cause severe privacy risks as well. In this paper, we perform the first privacy analysis of contrastive learning through the lens of membership inference and attribute inference. Our experimental results show that contrastive models trained on image datasets are less vulnerable to membership inference attacks but more vulnerable to attribute inference attacks compared to supervised models. The former is due to the fact that contrastive models are less prone to overfitting, while the latter is caused by contrastive models' capability of representing data samples expressively. To remedy this situation, we propose the first privacy-preserving contrastive learning mechanism, Talos, relying on adversarial training. Empirical results show that Talos can successfully mitigate attribute inference risks for contrastive models while maintaining their membership privacy and model utility.

Few-shot learning methods offer pre-training techniques optimized for easier later adaptation of the model to new classes (unseen during training) using one or a few examples. This adaptivity to unseen classes is especially important for many practical applications where the pre-trained label space cannot remain fixed for effective use and the model needs to be "specialized" to support new categories on the fly. One particularly interesting scenario, essentially overlooked by the few-shot literature, is Coarse-to-Fine Few-Shot (C2FS), where the training classes (e.g. animals) are of much `coarser granularity' than the target (test) classes (e.g. breeds). A very practical example of C2FS is when the target classes are sub-classes of the training classes. Intuitively, it is especially challenging as (both regular and few-shot) supervised pre-training tends to learn to ignore intra-class variability which is essential for separating sub-classes. In this paper, we introduce a novel 'Angular normalization' module that allows to effectively combine supervised and self-supervised contrastive pre-training to approach the proposed C2FS task, demonstrating significant gains in a broad study over multiple baselines and datasets. We hope that this work will help to pave the way for future research on this new, challenging, and very practical topic of C2FS classification.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Recent successes of value-based multi-agent deep reinforcement learning employ optimism in value function by carefully controlling learning rate(Omidshafiei et al., 2017) or reducing update prob-ability (Palmer et al., 2018). We introduce a de-centralized quantile estimator: Responsible Implicit Quantile Network (RIQN), while robust to teammate-environment interactions, able to reduce the amount of imposed optimism. Upon benchmarking against related Hysteretic-DQN(HDQN) and Lenient-DQN (LDQN), we findRIQN agents more stable, sample efficient and more likely to converge to the optimal policy.

Methods proposed in the literature towards continual deep learning typically operate in a task-based sequential learning setup. A sequence of tasks is learned, one at a time, with all data of current task available but not of previous or future tasks. Task boundaries and identities are known at all times. This setup, however, is rarely encountered in practical applications. Therefore we investigate how to transform continual learning to an online setup. We develop a system that keeps on learning over time in a streaming fashion, with data distributions gradually changing and without the notion of separate tasks. To this end, we build on the work on Memory Aware Synapses, and show how this method can be made online by providing a protocol to decide i) when to update the importance weights, ii) which data to use to update them, and iii) how to accumulate the importance weights at each update step. Experimental results show the validity of the approach in the context of two applications: (self-)supervised learning of a face recognition model by watching soap series and learning a robot to avoid collisions.

This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and controls might be combined to approach these challenges.

Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations can cause proficient but narrowly-learned policies to fail at test time. In this work, we propose to learn how to quickly and effectively adapt online to new situations as well as to perturbations. To enable sample-efficient meta-learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach trains a global model such that, when combined with recent data, the model can be be rapidly adapted to the local context. Our experiments demonstrate that our approach can enable simulated agents to adapt their behavior online to novel terrains, to a crippled leg, and in highly-dynamic environments.

北京阿比特科技有限公司