The index of success of the researchers is now mostly measured using the Hirsch index ($h$). Our recent precise demonstration, that statistically $h \sim \sqrt {N_c} \sim \sqrt {N_p}$, where $N_p$ and $N_c$ denote respectively the total number of publications and total citations for the researcher, suggests that average number of citations per paper ($N_c/N_p$), and hence $h$, are statistical numbers (Dunbar numbers) depending on the community or network to which the researcher belongs. We show here, extending our earlier observations, that the indications of success are not reflected by the total citations $N_c$, rather by the inequalities among citations from publications to publications. Specifically, we show that for very successful authors, the yearly variations in the Gini index ($g$, giving the average inequality of citations for the publications) and the Kolkata index ($k$, giving the fraction of total citations received by the top $1 - k$ fraction of publications; $k = 0.80$ corresponds to Pareto's 80/20 law) approach each other to $g = k \simeq 0.82$, signaling a precursor for the arrival of (or departure from) the Self-Organized Critical (SOC) state of his/her publication statistics. Analyzing the citation statistics (from Google Scholar) of thirty successful scientists throughout their recorded publication history, we find that the $g$ and $k$ for very successful among them (mostly Nobel Laureates, highest rank Stanford Cite-Scorers, and a few others) reach and hover just above (and then) below that $g = k \simeq 0.82$ mark, while for others they remain below that mark. We also find that all the lower (than the SOC mark 0.82) values of $k$ and $g$ fit a linear relationship $k = 1/2 + cg$, with $c = 0.39$.
Software Quality Assurance (SQA) Engineers are responsible for assessing a product during every phase of the software development process to ensure that the outcomes of each phase and the final product possess the desired qualities. In general, a great SQA engineer needs to have a different set of abilities from development engineers to effectively oversee the entire product development process from beginning to end. Recent empirical studies identified important attributes of software engineers and managers, but the quality assurance role is overlooked. As software quality aspects have become more of a priority in the life cycle of software development, employers seek professionals that best suit the company's objectives and new graduates desire to make a valuable contribution through their job as an SQA engineer, but what makes them great? We addressed this knowledge gap by conducting 25 semi-structured interviews and 363 survey respondents with software quality assurance engineers from different companies around the world. We use the data collected from these activities to derive a comprehensive set of attributes that are considered important. As a result of the interviews, twenty-five attributes were identified and grouped into five main categories: personal, social, technical, management, and decision-making attributes. Through a rating survey, we confirmed that the distinguishing characteristics of great SQA engineers are curiosity, the ability to communicate effectively, and critical thinking skills. This work will guide further studies with SQA practitioners, by considering contextual factors and providing some implications for research and practice.
Recently, AI assistants based on large language models (LLMs) show surprising performance in many tasks, such as dialogue, solving math problems, writing code, and using tools. Although LLMs possess intensive world knowledge, they still make factual errors when facing some knowledge intensive tasks, like open-domain question answering. These untruthful responses from the AI assistant may cause significant risks in practical applications. We believe that an AI assistant's refusal to answer questions it does not know is a crucial method for reducing hallucinations and making the assistant truthful. Therefore, in this paper, we ask the question "Can AI assistants know what they don't know and express them through natural language?" To answer this question, we construct a model-specific "I don't know" (Idk) dataset for an assistant, which contains its known and unknown questions, based on existing open-domain question answering datasets. Then we align the assistant with its corresponding Idk dataset and observe whether it can refuse to answer its unknown questions after alignment. Experimental results show that after alignment with Idk datasets, the assistant can refuse to answer most its unknown questions. For questions they attempt to answer, the accuracy is significantly higher than before the alignment.
Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
It is tempting to assume that because effectiveness metrics have free choice to assign scores to search engine result pages (SERPs) there must thus be a similar degree of freedom as to the relative order that SERP pairs can be put into. In fact that second freedom is, to a considerable degree, illusory. That's because if one SERP in a pair has been given a certain score by a metric, fundamental ordering constraints in many cases then dictate that the score for the second SERP must be either not less than, or not greater than, the score assigned to the first SERP. We refer to these fixed relationships as innate pairwise SERP orderings. Our first goal in this work is to describe and defend those pairwise SERP relationship constraints, and tabulate their relative occurrence via both exhaustive and empirical experimentation. We then consider how to employ such innate pairwise relationships in IR experiments, leading to a proposal for a new measurement paradigm. Specifically, we argue that tables of results in which many different metrics are listed for champion versus challenger system comparisons should be avoided; and that instead a single metric be argued for in principled terms, with any relationships identified by that metric then reinforced via an assessment of the innate relationship as to whether other metrics - indeed, all other metrics - are likely to yield the same system-vs-system outcome.
While auxiliary information has become a key to enhance Large Language Models (LLMs), relatively little is known about how well LLMs merge these contexts, specifically generated and retrieved. To study this, we formulate a task specifically designed to identify whether the answers, derived from the integration of generated and retrieved contexts, are attributed to either generated or retrieved contexts. To support this task, we develop a methodology to construct datasets with conflicting contexts, where each question is paired with both generated and retrieved contexts, yet only one of them contains the correct answer. Our experiments reveal a significant bias in LLMs towards generated contexts, as evidenced across state-of-the-art open (Llama2-7b/13b) and closed (GPT 3.5/4) systems. We further identify two key factors contributing to this bias: i) Contexts generated by LLMs typically show greater similarity to the questions, increasing their likelihood of selection; ii) The segmentation process used in retrieved contexts disrupts their completeness, thereby hindering their full utilization in LLMs. Our analysis enhances the understanding of how LLMs merge diverse contexts, offering valuable insights for advancing current augmentation methods for LLMs.
Human cognitive performance is enhanced by the use of tools. For example, a human can produce a much greater, and more accurate, volume of mathematical calculation in a unit of time using a calculator or a spreadsheet application on a computer. Such tools have taken over the burden of lower level cognitive grunt work but the human still serves the role of the expert performing higher level thinking and reasoning. Recently, however, unsupervised, deep, machine learning has produced cognitive systems able to outperform humans in several domains. When humans use these tools in a human cog ensemble, the cognitive ability of the human is augmented. In some cases, even non experts can achieve, and even exceed, the performance of experts in a particular domain, synthetic expertise. A new cognitive system, ChatGPT, has burst onto the scene during the past year. This paper investigates human cognitive augmentation due to using ChatGPT by presenting the results of two experiments comparing responses created using ChatGPT with results created not using ChatGPT. We find using ChatGPT does not always result in cognitive augmentation and does not yet replace human judgement, discernment, and evaluation in certain types of tasks. In fact, ChatGPT was observed to result in misleading users resulting in negative cognitive augmentation.
Customizing machine translation models to comply with fine-grained attributes such as formality has seen tremendous progress recently. However, current approaches mostly rely on at least some supervised data with attribute annotation. Data scarcity therefore remains a bottleneck to democratizing such customization possibilities to a wider range of languages, lower-resource ones in particular. Given recent progress in pretrained massively multilingual translation models, we use them as a foundation to transfer the attribute controlling capabilities to languages without supervised data. In this work, we present a comprehensive analysis of transferring attribute controllers based on a pretrained NLLB-200 model. We investigate both training- and inference-time control techniques under various data scenarios, and uncover their relative strengths and weaknesses in zero-shot performance and domain robustness. We show that both paradigms are complementary, as shown by consistent improvements on 5 zero-shot directions. Moreover, a human evaluation on a real low-resource language, Bengali, confirms our findings on zero-shot transfer to new target languages. The code is $\href{//github.com/dannigt/attribute-controller-transfer}{\text{here}}$.
In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.