亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Session types are widely used as abstractions of asynchronous message passing systems. Refinement for such abstractions is crucial as it allows improvements of a given component without compromising its compatibility with the rest of the system. In the context of session types, the most general notion of refinement is the asynchronous session subtyping, which allows message emissions to be anticipated but only under certain conditions. In particular, asynchronous session subtyping rules out candidates subtypes that occur naturally in communication protocols where, e.g., two parties simultaneously send each other a finite but unspecified amount of messages before removing them from their respective buffers. To address this shortcoming, we study fair compliance over asynchronous session types and fair refinement as the relation that preserves it. This allows us to propose a novel variant of session subtyping that leverages the notion of controllability from service contract theory and that is a sound characterisation of fair refinement. In addition, we show that both fair refinement and our novel subtyping are undecidable. We also present a sound algorithm which deals with examples that feature potentially unbounded buffering. Finally, we present an implementation of our algorithm and an empirical evaluation of it on synthetic benchmarks.

相關內容

While Gaussian processes are a mainstay for various engineering and scientific applications, the uncertainty estimates don't satisfy frequentist guarantees and can be miscalibrated in practice. State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance, which yields confidence intervals that are potentially too coarse. To remedy this, we present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance but using a different set of hyperparameters chosen to satisfy an empirical calibration constraint. This results in a calibration approach that is considerably more flexible than existing approaches, which we optimize to yield tight predictive quantiles. Our approach is shown to yield a calibrated model under reasonable assumptions. Furthermore, it outperforms existing approaches in sharpness when employed for calibrated regression.

Reliable broadcast and consensus are the two pillars that support a lot of non-trivial fault-tolerant distributed middleware and fault-tolerant distributed systems. While they have close definitions, they strongly differ in the underlying assumptions needed to implement each of them. Reliable broadcast can be implemented in asynchronous systems in the presence of crash or Byzantine failures while Consensus cannot. This key difference stems from the fact that consensus involves synchronization between multiple processes that concurrently propose values, while reliable broadcast simply involves delivering a message from a predefined sender. This paper strikes a balance between these two agreement abstractions in the presence of Byzantine failures. It proposes CAC, a novel agreement abstraction that enables multiple processes to broadcast messages simultaneously, while guaranteeing that (despite potential conflicts, asynchrony, and Byzantine behaviors) the non-faulty processes will agree on messages deliveries. We show that this novel abstraction can enable more efficient algorithms for a variety of applications (such as money transfer where several people can share a same account). This is obtained by focusing the need for synchronization only on the processes that actually need to synchronize.

Classical locally recoverable codes, which permit highly efficient recovery from localized errors as well as global recovery from larger errors, provide some of the most useful codes for distributed data storage in practice. In this paper, we initiate the study of quantum locally recoverable codes (qLRCs). In the long term, like their classical counterparts, such qLRCs may be used for large-scale quantum data storage. Our results also have concrete implications for quantum LDPC codes, which are applicable to near-term quantum error-correction. After defining quantum local recoverability, we provide an explicit construction of qLRCs based on the classical LRCs of Tamo and Barg (2014), which we show have (1) a close-to-optimal rate-distance tradeoff (i.e. near the Singleton bound), (2) an efficient decoder, and (3) permit good spatial locality in a physical implementation. Although the analysis is significantly more involved than in the classical case, we obtain close-to-optimal parameters by introducing a "folded" version of our quantum Tamo-Barg (qTB) codes, which we then analyze using a combination of algebraic techniques. We furthermore present and analyze two additional constructions using more basic techniques, namely random qLRCs, and qLRCs from AEL distance amplification. Each of these constructions has some advantages, but neither achieves all 3 properties of our folded qTB codes described above. We complement these constructions with Singleton-like bounds that show our qLRC constructions achieve close-to-optimal parameters. We also apply these results to obtain Singleton-like bounds for qLDPC codes, which to the best of our knowledge are novel. We then show that even the weakest form of a stronger locality property called local correctability, which permits more robust local recovery and is achieved by certain classical codes, is impossible quantumly.

Trustworthy language models should abstain from answering questions when they do not know the answer. However, the answer to a question can be unknown for a variety of reasons. Prior research has focused on the case in which the question is clear and the answer is unambiguous but possibly unknown, but the answer to a question can also be unclear due to uncertainty of the questioner's intent or context. We investigate question answering from this perspective, focusing on answering a subset of questions with a high degree of accuracy, from a set of questions in which many are inherently ambiguous. In this setting, we find that the most reliable approach to decide when to abstain involves quantifying repetition within sampled model outputs, rather than the model's likelihood or self-verification as used in prior work. We find this to be the case across different types of uncertainty and model scales,and with or without instruction tuning. Our results suggest that sampling-based confidence scores help calibrate answers to relatively unambiguous questions, with more dramatic improvements on ambiguous questions.

Multivalued treatments are commonplace in applications. We explore the use of discrete-valued instruments to control for selection bias in this setting. Our discussion revolves around the concept of targeting instruments: which instruments target which treatments. It allows us to establish conditions under which counterfactual averages and treatment effects are point- or partially-identified for composite complier groups. We illustrate the usefulness of our framework by applying it to data from the Head Start Impact Study. Under a plausible positive selection assumption, we derive informative bounds that suggest less beneficial effects of Head Start expansions than the parametric estimates of Kline and Walters (2016).

Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last $k$ latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.

The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司