亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Few-shot learning (FSL) is one of the significant and hard problems in the field of image classification. However, in contrast to the rapid development of the visible light dataset, the progress in SAR target image classification is much slower. The lack of unified benchmark is a key reason for this phenomenon, which may be severely overlooked by the current literature. The researchers of SAR target image classification always report their new results on their own datasets and experimental setup. It leads to inefficiency in result comparison and impedes the further progress of this area. Motivated by this observation, we propose a novel few-shot SAR image classification benchmark (FewSAR) to address this issue. FewSAR consists of an open-source Python code library of 15 classic methods in three categories for few-shot SAR image classification. It provides an accessible and customizable testbed for different few-shot SAR image classification task. To further understanding the performance of different few-shot methods, we establish evaluation protocols and conduct extensive experiments within the benchmark. By analyzing the quantitative results and runtime under the same setting, we observe that the accuracy of metric learning methods can achieve the best results. Meta-learning methods and fine-tuning methods perform poorly on few-shot SAR images, which is primarily due to the bias of existing datasets. We believe that FewSAR will open up a new avenue for future research and development, on real-world challenges at the intersection of SAR image classification and few-shot deep learning. We will provide our code for the proposed FewSAR at //github.com/solarlee/FewSAR.

相關內容

圖像分類,顧名思義,是一個輸入圖像,輸出對該圖像內容分類的描述的問題。它是計算機視覺的核心,實際應用廣泛。

Medical image analysis using deep learning is often challenged by limited labeled data and high annotation costs. Fine-tuning the entire network in label-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from limited labeled data while keeping the pre-trained model unchanged. However, previous work has overlooked the importance of selective labeling in downstream tasks, which aims to select the most valuable downstream samples for annotation to achieve the best performance with minimum annotation cost. To address this, we propose a framework that combines selective labeling with prompt tuning (SLPT) to boost performance in limited labels. Specifically, we introduce a feature-aware prompt updater to guide prompt tuning and a TandEm Selective LAbeling (TESLA) strategy. TESLA includes unsupervised diversity selection and supervised selection using prompt-based uncertainty. In addition, we propose a diversified visual prompt tuning strategy to provide multi-prompt-based discrepant predictions for TESLA. We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters, also achieving 94% of full-data performance by labeling only 5% of the data.

Multi-agent reinforcement learning (MARL) has achieved promising results in recent years. However, most existing reinforcement learning methods require a large amount of data for model training. In addition, data-efficient reinforcement learning requires the construction of strong inductive biases, which are ignored in the current MARL approaches. Inspired by the symmetry phenomenon in multi-agent systems, this paper proposes a framework for exploiting prior knowledge by integrating data augmentation and a well-designed consistency loss into the existing MARL methods. In addition, the proposed framework is model-agnostic and can be applied to most of the current MARL algorithms. Experimental tests on multiple challenging tasks demonstrate the effectiveness of the proposed framework. Moreover, the proposed framework is applied to a physical multi-robot testbed to show its superiority.

Scene Text Editing (STE) is a challenging research problem, and it aims to modify existing texts in an image while preserving the background and the font style of the original text of the image. Due to its various real-life applications, researchers have explored several approaches toward STE in recent years. However, most of the existing STE methods show inferior editing performance because of (1) complex image backgrounds, (2) various font styles, and (3) varying word lengths within the text. To address such inferior editing performance issues, in this paper, we propose a novel font-agnostic scene text editing framework, named FAST, for simultaneously generating text in arbitrary styles and locations while preserving a natural and realistic appearance through combined mask generation and style transfer. The proposed approach differs from the existing methods as they directly modify all image pixels. Instead, the proposed method has introduced a filtering mechanism to remove background distractions, allowing the network to focus solely on the text regions where editing is required. Additionally, a text-style transfer module has been designed to mitigate the challenges posed by varying word lengths. Extensive experiments and ablations have been conducted, and the results demonstrate that the proposed method outperforms the existing methods both qualitatively and quantitatively.

Graph classification is a crucial task in many real-world multimedia applications, where graphs can represent various multimedia data types such as images, videos, and social networks. Previous efforts have applied graph neural networks (GNNs) in balanced situations where the class distribution is balanced. However, real-world data typically exhibit long-tailed class distributions, resulting in a bias towards the head classes when using GNNs and limited generalization ability over the tail classes. Recent approaches mainly focus on re-balancing different classes during model training, which fails to explicitly introduce new knowledge and sacrifices the performance of the head classes. To address these drawbacks, we propose a novel framework called Retrieval Augmented Hybrid Network (RAHNet) to jointly learn a robust feature extractor and an unbiased classifier in a decoupled manner. In the feature extractor training stage, we develop a graph retrieval module to search for relevant graphs that directly enrich the intra-class diversity for the tail classes. Moreover, we innovatively optimize a category-centered supervised contrastive loss to obtain discriminative representations, which is more suitable for long-tailed scenarios. In the classifier fine-tuning stage, we balance the classifier weights with two weight regularization techniques, i.e., Max-norm and weight decay. Experiments on various popular benchmarks verify the superiority of the proposed method against state-of-the-art approaches.

Despite the proliferation of diverse hardware accelerators (e.g., NPU, TPU, DPU), deploying deep learning models on edge devices with fixed-point hardware is still challenging due to complex model quantization and conversion. Existing model quantization frameworks like Tensorflow QAT [1], TFLite PTQ [2], and Qualcomm AIMET [3] supports only a limited set of quantization schemes (e.g., only asymmetric per-tensor quantization in TF1.x QAT [4]). Accordingly, deep learning models cannot be easily quantized for diverse fixed-point hardwares, mainly due to slightly different quantization requirements. In this paper, we envision a new type of model quantization approach called MRQ (model re-quantization), which takes existing quantized models and quickly transforms the models to meet different quantization requirements (e.g., asymmetric -> symmetric, non-power-of-2 scale -> power-of-2 scale). Re-quantization is much simpler than quantizing from scratch because it avoids costly re-training and provides support for multiple quantization schemes simultaneously. To minimize re-quantization error, we developed a new set of re-quantization algorithms including weight correction and rounding error folding. We have demonstrated that MobileNetV2 QAT model [7] can be quickly re-quantized into two different quantization schemes (i.e., symmetric and symmetric+power-of-2 scale) with less than 0.64 units of accuracy loss. We believe our work is the first to leverage this concept of re-quantization for model quantization and models obtained from the re-quantization process have been successfully deployed on NNA in the Echo Show devices.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司