The recent successes in analyzing images with deep neural networks are almost exclusively achieved with Convolutional Neural Networks (CNNs). The training of these CNNs, and in fact of all deep neural network architectures, uses the backpropagation algorithm where the output of the network is compared with the desired result and the difference is then used to tune the weights of the network towards the desired outcome. In a 2022 preprint, Geoffrey Hinton suggested an alternative way of training which passes the desired results together with the images at the input of the network. This so called Forward Forward (FF) algorithm has up to now only been used in fully connected networks. In this paper, we show how the FF paradigm can be extended to CNNs. Our FF-trained CNN, featuring a novel spatially-extended labeling technique, achieves a classification accuracy of 99.0% on the MNIST hand-written digits dataset. We show how different hyperparameters affect the performance of the proposed algorithm and compare the results with CNN trained with the standard backpropagation approach. Furthermore, we use Class Activation Maps to investigate which type of features are learnt by the FF algorithm.
Ensuring robustness in face recognition systems across various challenging conditions is crucial for their versatility. State-of-the-art methods often incorporate additional information, such as depth, thermal, or angular data, to enhance performance. However, light field-based face recognition approaches that leverage angular information face computational limitations. This paper investigates the fundamental trade-off between spatio-angular resolution in light field representation to achieve improved face recognition performance. By utilizing macro-pixels with varying angular resolutions while maintaining the overall image size, we aim to quantify the impact of angular information at the expense of spatial resolution, while considering computational constraints. Our experimental results demonstrate a notable performance improvement in face recognition systems by increasing the angular resolution, up to a certain extent, at the cost of spatial resolution.
This academic paper examines the strategic interactions between Japan, other nations, and the International Atomic Energy Agency (IAEA) regarding Japan's decision to release treated nuclear wastewater from the Fukushima Daiichi Nuclear Power Plant into the sea. It introduces a payoff matrix and time-delay elements in replicator dynamic equations to mirror real-world decision-making delays. The paper analyzes the stability of strategies and conditions for different stable states using characteristic roots of a linearized system and numerical simulations. It concludes that time delays significantly affect decision-making stability and evolution trajectories in nuclear wastewater disposal strategies. The study highlights the importance of efficient wastewater treatment technology, the impact of export tax revenue losses on Japan's strategies, and the role of international cooperation. The novelty of the research lies in integrating time-delay elements from ocean dynamics and governmental decision-making into the game-theoretical model.
Large Language Models (LLMs) are increasingly integrated with external tools. While these integrations can significantly improve the functionality of LLMs, they also create a new attack surface where confidential data may be disclosed between different components. Specifically, malicious tools can exploit vulnerabilities in the LLM itself to manipulate the model and compromise the data of other services, raising the question of how private data can be protected in the context of LLM integrations. In this work, we provide a systematic way of evaluating confidentiality in LLM-integrated systems. For this, we formalize a "secret key" game that can capture the ability of a model to conceal private information. This enables us to compare the vulnerability of a model against confidentiality attacks and also the effectiveness of different defense strategies. In this framework, we evaluate eight previously published attacks and four defenses. We find that current defenses lack generalization across attack strategies. Building on this analysis, we propose a method for robustness fine-tuning, inspired by adversarial training. This approach is effective in lowering the success rate of attackers and in improving the system's resilience against unknown attacks.
We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.
The recent proliferation of computers and the internet have opened new opportunities for collecting and processing data. However, such data are often obtained without a well-planned probability survey design. Such non-probability based samples cannot be automatically regarded as representative of the population of interest. Several classes of methods for estimation and inferences from non-probability samples have been developed in recent years. The quasi-randomization methods assume that non-probability sample selection is governed by an underlying latent random mechanism. The basic idea is to use information collected from a probability ("reference") sample to uncover latent non-probability survey participation probabilities (also known as "propensity scores") and use them in estimation of target finite population parameters. In this paper, we review and compare theoretical properties of recently developed methods of estimation survey participation probabilities and study their relative performances in simulations.
We show that Edge Multiway Cut (also called Multiterminal Cut) and Node Multiway Cut are NP-complete on graphs of maximum degree $3$ (also known as subcubic graphs). This improves on a previous degree bound of $11$. Our NP-completeness result holds even for subcubic graphs that are planar.
We propose a novel method for privacy-preserving deep neural networks (DNNs) with the Vision Transformer (ViT). The method allows us not only to train models and test with visually protected images but to also avoid the performance degradation caused from the use of encrypted images, whereas conventional methods cannot avoid the influence of image encryption. A domain adaptation method is used to efficiently fine-tune ViT with encrypted images. In experiments, the method is demonstrated to outperform conventional methods in an image classification task on the CIFAR-10 and ImageNet datasets in terms of classification accuracy.
*《Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs》A Jolicoeur-Martineau, I Mitliagkas [Mila] (2019)
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.