Fashion analysis refers to the process of examining and evaluating trends, styles, and elements within the fashion industry to understand and interpret its current state, generating fashion reports. It is traditionally performed by fashion professionals based on their expertise and experience, which requires high labour cost and may also produce biased results for relying heavily on a small group of people. In this paper, to tackle the Fashion Report Generation (FashionReGen) task, we propose an intelligent Fashion Analyzing and Reporting system based the advanced Large Language Models (LLMs), debbed as GPT-FAR. Specifically, it tries to deliver FashionReGen based on effective catwalk analysis, which is equipped with several key procedures, namely, catwalk understanding, collective organization and analysis, and report generation. By posing and exploring such an open-ended, complex and domain-specific task of FashionReGen, it is able to test the general capability of LLMs in fashion domain. It also inspires the explorations of more high-level tasks with industrial significance in other domains. Video illustration and more materials of GPT-FAR can be found in //github.com/CompFashion/FashionReGen.
Intelligent vehicles have demonstrated excellent capabilities in many transportation scenarios, but the complex on-board sensors and the inference capabilities of on-board neural networks limit the accuracy of intelligent vehicles for accident detection in complex transportation systems. In this paper, we present AccidentBlip2, a pure vision-based multimodal large model Blip2 accident detection method. Our method first processes the multi-view through ViT-14g and inputs the multi-view features into the cross attention layer of the Qformer, while our self-designed Motion Qformer replaces the self-attention layer in Blip2's Qformer with the Temporal Attention layer in the In the inference process, the query generated in the previous frame is input into the Temporal Attention layer to realize the inference for temporal information. Then we detect whether there is an accident in the surrounding environment by performing autoregressive inference on the query input to the MLP. We also extend our approach to a multi-vehicle cooperative system by deploying Motion Qformer on each vehicle and simultaneously inputting the inference-generated query into the MLP for autoregressive inference. Our approach detects the accuracy of existing video large language models and also adapts to multi-vehicle systems, making it more applicable to intelligent transportation scenarios.
Chinese landscape painting is a gem of Chinese cultural and artistic heritage that showcases the splendor of nature through the deep observations and imaginations of its painters. Limited by traditional techniques, these artworks were confined to static imagery in ancient times, leaving the dynamism of landscapes and the subtleties of artistic sentiment to the viewer's imagination. Recently, emerging text-to-video (T2V) diffusion methods have shown significant promise in video generation, providing hope for the creation of dynamic Chinese landscape paintings. However, challenges such as the lack of specific datasets, the intricacy of artistic styles, and the creation of extensive, high-quality videos pose difficulties for these models in generating Chinese landscape painting videos. In this paper, we propose CLV-HD (Chinese Landscape Video-High Definition), a novel T2V dataset for Chinese landscape painting videos, and ConCLVD (Controllable Chinese Landscape Video Diffusion), a T2V model that utilizes Stable Diffusion. Specifically, we present a motion module featuring a dual attention mechanism to capture the dynamic transformations of landscape imageries, alongside a noise adapter to leverage unsupervised contrastive learning in the latent space. Following the generation of keyframes, we employ optical flow for frame interpolation to enhance video smoothness. Our method not only retains the essence of the landscape painting imageries but also achieves dynamic transitions, significantly advancing the field of artistic video generation. The source code and dataset are available at //anonymous.4open.science/r/ConCLVD-EFE3.
Data profilers play a crucial role in the preprocessing phase of data analysis by identifying quality issues such as missing, extreme, or erroneous values. Traditionally, profilers have relied solely on statistical methods, which lead to high false positives and false negatives. For example, they may incorrectly flag missing values where such absences are expected and normal based on the data's semantic context. To address these, we introduce Cocoon, a data profiling system that integrates LLMs to imbue statistical profiling with semantics. Cocoon enhances traditional profiling methods by adding a three-step process: Semantic Context, Semantic Profile, and Semantic Review. Our user studies show that Cocoon is highly effective at accurately discerning whether anomalies are genuine errors requiring correction or acceptable variations based on the semantics for real-world datasets.
With the advent of social media, fun selfie filters have come into tremendous mainstream use affecting the functioning of facial biometric systems as well as image recognition systems. These filters vary from beautification filters and Augmented Reality (AR)-based filters to filters that modify facial landmarks. Hence, there is a need to assess the impact of such filters on the performance of existing face recognition systems. The limitation associated with existing solutions is that these solutions focus more on the beautification filters. However, the current AR-based filters and filters which distort facial key points are in vogue recently and make the faces highly unrecognizable even to the naked eye. Also, the filters considered are mostly obsolete with limited variations. To mitigate these limitations, we aim to perform a holistic impact analysis of the latest filters and propose an user recognition model with the filtered images. We have utilized a benchmark dataset for baseline images, and applied the latest filters over them to generate a beautified/filtered dataset. Next, we have introduced a model FaceFilterNet for beautified user recognition. In this framework, we also utilize our model to comment on various attributes of the person including age, gender, and ethnicity. In addition, we have also presented a filter-wise impact analysis on face recognition, age estimation, gender, and ethnicity prediction. The proposed method affirms the efficacy of our dataset with an accuracy of 87.25% and an optimal accuracy for facial attribute analysis.
Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation.