亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intelligent vehicles have demonstrated excellent capabilities in many transportation scenarios, but the complex on-board sensors and the inference capabilities of on-board neural networks limit the accuracy of intelligent vehicles for accident detection in complex transportation systems. In this paper, we present AccidentBlip2, a pure vision-based multimodal large model Blip2 accident detection method. Our method first processes the multi-view through ViT-14g and inputs the multi-view features into the cross attention layer of the Qformer, while our self-designed Motion Qformer replaces the self-attention layer in Blip2's Qformer with the Temporal Attention layer in the In the inference process, the query generated in the previous frame is input into the Temporal Attention layer to realize the inference for temporal information. Then we detect whether there is an accident in the surrounding environment by performing autoregressive inference on the query input to the MLP. We also extend our approach to a multi-vehicle cooperative system by deploying Motion Qformer on each vehicle and simultaneously inputting the inference-generated query into the MLP for autoregressive inference. Our approach detects the accuracy of existing video large language models and also adapts to multi-vehicle systems, making it more applicable to intelligent transportation scenarios.

相關內容

Deep models have recently emerged as a promising tool to solve partial differential equations (PDEs), known as neural PDE solvers. While neural solvers trained from either simulation data or physics-informed loss can solve the PDEs reasonably well, they are mainly restricted to a specific set of PDEs, e.g. a certain equation or a finite set of coefficients. This bottleneck limits the generalizability of neural solvers, which is widely recognized as its major advantage over numerical solvers. In this paper, we present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs by leveraging a Transformer pre-trained on diverse data and conditioned on diverse PDEs. Instead of simply scaling up data and parameters, Unisolver stems from the theoretical analysis of the PDE-solving process. Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components, e.g. equation symbols, coefficients, and initial and boundary conditions. Inspired by the mathematical structure of PDEs, we define a complete set of PDE components and correspondingly embed them as domain-wise (e.g. equation symbols) and point-wise (e.g. boundaries) conditions for Transformer PDE solvers. Integrating physical insights with recent Transformer advances, Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks, showing impressive gains and endowing favorable generalizability and scalability.

Blockchain's decentralization, transparency, and tamper-resistance properties have facilitated the system's use in various application fields. However, the low throughput and high confirmation latency hinder the widespread adoption of Blockchain. Many solutions have been proposed to address these issues, including first-layer solutions (or on-chain solutions) and second-layer solutions (or off-chain solutions). Among the proposed solutions, the blockchain sharding system is the most scalable one, where the nodes in the network are divided into several groups. The nodes in different shards work in parallel to validate the transactions and add them to the blocks, and in such a way, the throughput increases significantly. However, previous works have not adequately summarized the latest achievements in blockchain sharding, nor have they fully showcased its state-of-the-art. Our study provides a systemization of knowledge of public blockchain sharding, including the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols. We also compare their performance and discuss current constraints and future research directions.

We study a budget-aggregation setting in which a number of voters report their ideal distribution of a budget over a set of alternatives, and a mechanism aggregates these reports into an allocation. Ideally, such mechanisms are truthful, i.e., voters should not be incentivized to misreport their preferences. For the case of two alternatives, the set of mechanisms that are truthful and additionally meet a range of basic desiderata (anonymity, neutrality, and continuity) exactly coincides with the so-called moving-phantom mechanisms, but whether this space is richer for more alternatives was repeatedly stated as an open question. We answer this question in the affirmative by presenting a new mechanism that is not a moving-phantom mechanism but satisfies the four properties. Since moving-phantom mechanisms can only provide limited fairness guarantees (measured as the worst-case distance to a fair share solution), one motivation for broadening the class of truthful mechanisms is the hope for improved fairness guarantees. We dispel this hope by showing that lower bounds holding for the class of moving-phantom mechanisms extend to all truthful, anonymous, neutral, and continuous mechanisms.

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding $x \in \mathbb{R}^d$ per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality $\epsilon$-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5$\times$ fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10$\%$ improved recall with $90\%$ lower latency.

Secure aggregation of high-dimensional vectors is a fundamental primitive in federated statistics and learning. A two-server system such as PRIO allows for scalable aggregation of secret-shared vectors. Adversarial clients might try to manipulate the aggregate, so it is important to ensure that each (secret-shared) contribution is well-formed. In this work, we focus on the important and well-studied goal of ensuring that each contribution vector has bounded Euclidean norm. Existing protocols for ensuring bounded-norm contributions either incur a large communication overhead, or only allow for approximate verification of the norm bound. We propose Private Inexpensive Norm Enforcement (PINE): a new protocol that allows exact norm verification with little communication overhead. For high-dimensional vectors, our approach has a communication overhead of a few percent, compared to the 16-32x overhead of previous approaches.

The trend of modeless ML inference is increasingly growing in popularity as it hides the complexity of model inference from users and caters to diverse user and application accuracy requirements. Previous work mostly focuses on modeless inference in data centers. To provide low-latency inference, in this paper, we promote modeless inference at the edge. The edge environment introduces additional challenges related to low power consumption, limited device memory, and volatile network environments. To address these challenges, we propose HawkVision, which provides low-latency modeless serving of vision DNNs. HawkVision leverages a two-layer edge-DC architecture that employs confidence scaling to reduce the number of model options while meeting diverse accuracy requirements. It also supports lossy inference under volatile network environments. Our experimental results show that HawkVision outperforms current serving systems by up to 1.6X in P99 latency for providing modeless service. Our FPGA prototype demonstrates similar performance at certain accuracy levels with up to a 3.34X reduction in power consumption.

Well-fitted clothing is essential for both real and virtual garments to enable self-expression and accurate representation for a large variety of body types. Common practice in the industry is to provide a pre-made selection of distinct garment sizes such as small, medium and large. While these may cater to certain groups of individuals that fall within this distribution, they often exclude large sections of the population. In contrast, individually tailored clothing offers a solution to obtain custom-fit garments that are tailored to each individual. However, manual tailoring is time-consuming and requires specialized knowledge, prohibiting the approach from being applied to produce fitted clothing at scale. To address this challenge, we propose a novel method leveraging differentiable simulation for refitting and draping 3D garments and their corresponding 2D pattern panels onto a new body shape, enabling a workflow where garments only need to be designed once, in a single size, and they can be automatically refitted to support numerous body size and shape variations. Our method enables downstream applications, where our optimized 3D drape can be directly ingested into game engines or other applications. Our 2D sewing patterns allow for accurate physics-based simulations and enables manufacturing clothing for the real world.

Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms which can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground which in turn increases productivity and further strengthens their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.

Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

北京阿比特科技有限公司