亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A simple yet effective way of modeling survival data with cure fraction is by considering Box-Cox transformation cure model (BCTM) that unifies mixture and promotion time cure models. In this article, we numerically study the statistical properties of the BCTM when applied to interval censored data. Time-to-events associated with susceptible subjects are modeled through proportional hazards structure that allows for non-homogeneity across subjects, where the baseline hazard function is estimated by distribution-free piecewise linear function with varied degrees of non-parametricity. Due to missing cured statuses for right censored subjects, maximum likelihood estimates of model parameters are obtained by developing an expectation-maximization (EM) algorithm. Under the EM framework, the conditional expectation of the complete data log-likelihood function is maximized by considering all parameters (including the Box-Cox transformation parameter $\alpha$) simultaneously, in contrast to conventional profile-likelihood technique of estimating $\alpha$. The robustness and accuracy of the model and estimation method are established through a detailed simulation study under various parameter settings, and an analysis of real-life data obtained from a smoking cessation study.

相關內容

Text-to-image (T2I) synthesis has recently achieved significant advancements. However, challenges remain in the model's compositionality, which is the ability to create new combinations from known components. We introduce Winoground-T2I, a benchmark designed to evaluate the compositionality of T2I models. This benchmark includes 11K complex, high-quality contrastive sentence pairs spanning 20 categories. These contrastive sentence pairs with subtle differences enable fine-grained evaluations of T2I synthesis models. Additionally, to address the inconsistency across different metrics, we propose a strategy that evaluates the reliability of various metrics by using comparative sentence pairs. We use Winoground-T2I with a dual objective: to evaluate the performance of T2I models and the metrics used for their evaluation. Finally, we provide insights into the strengths and weaknesses of these metrics and the capabilities of current T2I models in tackling challenges across a range of complex compositional categories. Our benchmark is publicly available at //github.com/zhuxiangru/Winoground-T2I .

We develop a non-parametric Bayesian prior for a family of random probability measures by extending the Polya tree ($PT$) prior to a joint prior for a set of probability measures $G_1,\dots,G_n$, suitable for meta-analysis with event time outcomes. In the application to meta-analysis $G_i$ is the event time distribution specific to study $i$. The proposed model defines a regression on study-specific covariates by introducing increased correlation for any pair of studies with similar characteristics. The desired multivariate $PT$ model is constructed by introducing a hierarchical prior on the conditional splitting probabilities in the $PT$ construction for each of the $G_i$. The hierarchical prior replaces the independent beta priors for the splitting probability in the $PT$ construction with a Gaussian process prior for corresponding (logit) splitting probabilities across all studies. The Gaussian process is indexed by study-specific covariates, introducing the desired dependence with increased correlation for similar studies. The main feature of the proposed construction is (conditionally) conjugate posterior updating with commonly reported inference summaries for event time data. The construction is motivated by a meta-analysis over cancer immunotherapy studies.

Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to model latent state dynamics observed through emission models. However, existing variational methods for learning GPSSMs face a substantial challenge in optimizing a large number of parameters, particularly with the introduction of amortized inference networks. To address this challenge, we leverage the ensemble Kalman filter (EnKF), a well-established model-based filtering technique, to approximate the posterior distribution of latent states within the variational inference framework. This approach eliminates the need for inference networks, significantly reducing the number of variational parameters. Moreover, we demonstrate that with the aid of EnKF, the straightforward evaluation of approximated evidence lower bound (ELBO) in the variational inference can be easily obtained through the summation of multiple terms with closed-form solutions. By leveraging automatic differentiation tools, we thus can maximize the ELBO and train the GPSSM efficiently. We also extend the proposed method to an online setting and provide comprehensive algorithm analyses and insights. Extensive testing on diverse real and simulated datasets demonstrates that our variational inference algorithms, integrated with EnKF, outperform existing methods in terms of learning and inference performance.

Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.

This paper considers master equations for Markovian kinetic schemes that possess the detailed balance property. Chemical kinetics, as a prime example, often yields large-scale, highly stiff equations. Based on chemical intuitions, Sumiya et al. (2015) presented the rate constant matrix contraction (RCMC) method that computes approximate solutions to such intractable systems. This paper aims to establish a mathematical foundation for the RCMC method. We present a reformulated RCMC method in terms of matrix computation, deriving the method from several natural requirements. We then perform a theoretical error analysis based on eigendecomposition and discuss implementation details caring about computational efficiency and numerical stability. Through numerical experiments on synthetic and real kinetic models, we validate the efficiency, numerical stability, and accuracy of the presented method.

The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.

Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes rather than applying 3D-GS for each individual frame. In 4D-GS, a novel explicit representation containing both 3D Gaussians and 4D neural voxels is proposed. A decomposed neural voxel encoding algorithm inspired by HexPlane is proposed to efficiently build Gaussian features from 4D neural voxels and then a lightweight MLP is applied to predict Gaussian deformations at novel timestamps. Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$\times$800 resolution on an RTX 3090 GPU while maintaining comparable or better quality than previous state-of-the-art methods. More demos and code are available at //guanjunwu.github.io/4dgs/.

We propose a new framework to design and analyze accelerated methods that solve general monotone equation (ME) problems $F(x)=0$. Traditional approaches include generalized steepest descent methods and inexact Newton-type methods. If $F$ is uniformly monotone and twice differentiable, these methods achieve local convergence rates while the latter methods are globally convergent thanks to line search and hyperplane projection. However, a global rate is unknown for these methods. The variational inequality methods can be applied to yield a global rate that is expressed in terms of $\|F(x)\|$ but these results are restricted to first-order methods and a Lipschitz continuous operator. It has not been clear how to obtain global acceleration using high-order Lipschitz continuity. This paper takes a continuous-time perspective where accelerated methods are viewed as the discretization of dynamical systems. Our contribution is to propose accelerated rescaled gradient systems and prove that they are equivalent to closed-loop control systems. Based on this connection, we establish the properties of solution trajectories. Moreover, we provide a unified algorithmic framework obtained from discretization of our system, which together with two approximation subroutines yields both existing high-order methods and new first-order methods. We prove that the $p^{th}$-order method achieves a global rate of $O(k^{-p/2})$ in terms of $\|F(x)\|$ if $F$ is $p^{th}$-order Lipschitz continuous and the first-order method achieves the same rate if $F$ is $p^{th}$-order strongly Lipschitz continuous. If $F$ is strongly monotone, the restarted versions achieve local convergence with order $p$ when $p \geq 2$. Our discrete-time analysis is largely motivated by the continuous-time analysis and demonstrates the fundamental role that rescaled gradients play in global acceleration for solving ME problems.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司