The CONGEST and CONGEST-CLIQUE models have been carefully studied to represent situations where the communication bandwidth between processors in a network is severely limited. Messages of only $O(log(n))$ bits of information each may be sent between processors in each round. The quantum versions of these models allow the processors instead to communicate and compute with quantum bits under the same bandwidth limitations. This leads to the following natural research question: What problems can be solved more efficiently in these quantum models than in the classical ones? Building on existing work, we contribute to this question in two ways. Firstly, we present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability; one for producing an approximately optimal Steiner Tree, and one for producing an exact directed minimum spanning tree, each of which uses $\tilde{O}(n^{1/4})$ rounds of communication and $\tilde{O}(n^{9/4})$ messages, where $n$ is the number of nodes in the network. The algorithms thus achieve a lower asymptotic round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model. At a high level, we achieve these results by combining classical algorithmic frameworks with quantum subroutines. An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the asymptotic speedup. Secondly, we carefully characterize the constants and logarithmic factors involved in our algorithms as well as related algorithms, otherwise commonly obscured by $\tilde{O}$ notation. The analysis shows that some improvements are needed to render both our and existing related quantum and classical algorithms practical, as their asymptotic speedups only help for very large values of $n$.
Two lines of work are taking the central stage in AI research. On the one hand, the community is making increasing efforts to build models that discard spurious correlations and generalize better in novel test environments. Unfortunately, the bitter lesson so far is that no proposal convincingly outperforms a simple empirical risk minimization baseline. On the other hand, large language models (LLMs) have erupted as algorithms able to learn in-context, generalizing on-the-fly to the eclectic contextual circumstances that users enforce by means of prompting. In this paper, we argue that context $\approx$ environment, and posit that in-context learning holds the key to better domain generalization. Via extensive theory and experiments, we show that paying attention to context$\unicode{x2013}\unicode{x2013}$unlabeled examples as they arrive$\unicode{x2013}\unicode{x2013}$allows our proposed In-Context Risk Minimization (ICRM) algorithm to zoom-in on the test environment risk minimizer, leading to significant out-of-distribution performance improvements. From all of this, two messages are worth taking home. Researchers in domain generalization should consider environment as context, and harness the adaptive power of in-context learning. Researchers in LLMs should consider context as environment to better structure data towards generalization.
Let $X$ be a set of items of size $n$ , which may contain some defective items denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The test outcome is $1$ (positive) if $Q$ contains at least one defective item, i.e., $Q\cap I \neq \emptyset$, and $0$ (negative) otherwise. We give a novel approach to obtaining tight lower bounds in non-adaptive randomized group testing. Employing this new method, we can prove the following result. Any non-adaptive randomized algorithm that, for any set of defective items $I$, with probability at least $2/3$, returns an estimate of the number of defective items $|I|$ to within a constant factor requires at least $\Omega({\log n})$ tests. Our result matches the upper bound of $O(\log n)$ and solves the open problem posed by Damaschke and Sheikh Muhammad.
This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals with the numerical modelling of the misfolding process of $\alpha$-synuclein in Parkinson's disease. We introduce and analyze a discontinuous Galerkin method for the semi-discrete approximation of the Fisher-Kolmogorov (FK) equation that can be employed to model the process. We employ a discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) for space discretization, to accurately simulate the wavefronts typically observed in the prionic spreading and we prove stability and a priori error estimates. Next, we use a Crank-Nicolson scheme to advance in time. For the numerical verification of our numerical model, we first consider a manufactured solution, and then we consider a case with wavefront propagation in two-dimensional polygonal grids. Next, we carry out a simulation of $\alpha$-synuclein spreading in a two-dimensional brain slice in the sagittal plane with a polygonal agglomerated grid that takes full advantage of the flexibility of PolyDG approximation. Finally, we present a simulation in a three-dimensional geometry reconstructed from magnetic resonance images of a patient's brain.
Large language models (LLMs) have achieved remarkable success in NLP and multimodal tasks, among others. Despite these successes, two main challenges remain in developing LLMs: (i) high computational cost, and (ii) fair and objective evaluations. In this paper, we report a solution to significantly reduce LLM training cost through a growth strategy. We demonstrate that a 101B-parameter LLM with 0.31T tokens can be trained with a budget of 100K US dollars. Inspired by IQ tests, we also consolidate an additional range of evaluations on top of existing evaluations that focus on knowledge-oriented abilities. These IQ evaluations include symbolic mapping, rule understanding, pattern mining, and anti-interference. Such evaluations minimize the potential impact of memorization. Experimental results show that our model, named FLM-101B, trained with a budget of 100K US dollars, achieves performance comparable to powerful and well-known models, e.g., GPT-3 and GLM-130B, especially on the additional range of IQ evaluations. The checkpoint of FLM-101B is released at //huggingface.co/CofeAI/FLM-101B.
Most existing salient object detection methods mostly use U-Net or feature pyramid structure, which simply aggregates feature maps of different scales, ignoring the uniqueness and interdependence of them and their respective contributions to the final prediction. To overcome these, we propose the M$^3$Net, i.e., the Multilevel, Mixed and Multistage attention network for Salient Object Detection (SOD). Firstly, we propose Multiscale Interaction Block which innovatively introduces the cross-attention approach to achieve the interaction between multilevel features, allowing high-level features to guide low-level feature learning and thus enhancing salient regions. Secondly, considering the fact that previous Transformer based SOD methods locate salient regions only using global self-attention while inevitably overlooking the details of complex objects, we propose the Mixed Attention Block. This block combines global self-attention and window self-attention, aiming at modeling context at both global and local levels to further improve the accuracy of the prediction map. Finally, we proposed a multilevel supervision strategy to optimize the aggregated feature stage-by-stage. Experiments on six challenging datasets demonstrate that the proposed M$^3$Net surpasses recent CNN and Transformer-based SOD arts in terms of four metrics. Codes are available at //github.com/I2-Multimedia-Lab/M3Net.
We consider the problem of locating a nearest descriptor system of prescribed reduced order to a descriptor system with large order with respect to the ${\mathcal L}_\infty$ norm. Widely employed approaches such as the balanced truncation and best Hankel norm approximation for this ${\mathcal L}_\infty$ model reduction problem are usually expensive and yield solutions that are not optimal, not even locally. We propose approaches based on the minimization of the ${\mathcal L}_\infty$ objective by means of smooth optimization techniques. As we illustrate, direct applications of smooth optimization techniques are not feasible, since the optimization techniques converge at best at a linear rate requiring too many evaluations of the costly ${\mathcal L}_\infty$-norm objective to be practical. We replace the original large-scale system with a system of smaller order that interpolates the original system at points on the imaginary axis, and minimize the ${\mathcal L}_\infty$ objective after this replacement. The smaller system is refined by interpolating at additional imaginary points determined based on the local minimizer of the ${\mathcal L}_\infty$ objective, and the optimization is repeated. We argue the framework converges at a quadratic rate under smoothness and nondegeneracy assumptions, and describe how asymptotic stability constraints on the reduced system sought can be incorporated into our approach. The numerical experiments on benchmark examples illustrate that the approach leads to locally optimal solutions to the ${\mathcal L}_\infty$ model reduction problem, and the convergence occurs quickly for descriptors systems of order a few ten thousands.
Speech emotion conversion is the task of converting the expressed emotion of a spoken utterance to a target emotion while preserving the lexical content and speaker identity. While most existing works in speech emotion conversion rely on acted-out datasets and parallel data samples, in this work we specifically focus on more challenging in-the-wild scenarios and do not rely on parallel data. To this end, we propose a diffusion-based generative model for speech emotion conversion, the EmoConv-Diff, that is trained to reconstruct an input utterance while also conditioning on its emotion. Subsequently, at inference, a target emotion embedding is employed to convert the emotion of the input utterance to the given target emotion. As opposed to performing emotion conversion on categorical representations, we use a continuous arousal dimension to represent emotions while also achieving intensity control. We validate the proposed methodology on a large in-the-wild dataset, the MSP-Podcast v1.10. Our results show that the proposed diffusion model is indeed capable of synthesizing speech with a controllable target emotion. Crucially, the proposed approach shows improved performance along the extreme values of arousal and thereby addresses a common challenge in the speech emotion conversion literature.
This work proposes $\texttt{NePhi}$, a neural deformation model which results in approximately diffeomorphic transformations. In contrast to the predominant voxel-based approaches, $\texttt{NePhi}$ represents deformations functionally which allows for memory-efficient training and inference. This is of particular importance for large volumetric registrations. Further, while medical image registration approaches representing transformation maps via multi-layer perceptrons have been proposed, $\texttt{NePhi}$ facilitates both pairwise optimization-based registration $\textit{as well as}$ learning-based registration via predicted or optimized global and local latent codes. Lastly, as deformation regularity is a highly desirable property for most medical image registration tasks, $\texttt{NePhi}$ makes use of gradient inverse consistency regularization which empirically results in approximately diffeomorphic transformations. We show the performance of $\texttt{NePhi}$ on two 2D synthetic datasets as well as on real 3D lung registration. Our results show that $\texttt{NePhi}$ can achieve similar accuracies as voxel-based representations in a single-resolution registration setting while using less memory and allowing for faster instance-optimization.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.