Causal discovery methods have demonstrated the ability to identify the time series graphs representing the causal temporal dependency structure of dynamical systems. However, they do not include a measure of the confidence of the estimated links. Here, we introduce a novel bootstrap aggregation (bagging) and confidence measure method that is combined with time series causal discovery. This new method allows measuring confidence for the links of the time series graphs calculated by causal discovery methods. This is done by bootstrapping the original times series data set while preserving temporal dependencies. Next to confidence measures, aggregating the bootstrapped graphs by majority voting yields a final aggregated output graph. In this work, we combine our approach with the state-of-the-art conditional-independence-based algorithm PCMCI+. With extensive numerical experiments we empirically demonstrate that, in addition to providing confidence measures for links, Bagged-PCMCI+ improves the precision and recall of its base algorithm PCMCI+. Specifically, Bagged-PCMCI+ has a higher detection power regarding adjacencies and a higher precision in orienting contemporaneous edges while at the same time showing a lower rate of false positives. These performance improvements are especially pronounced in the more challenging settings (short time sample size, large number of variables, high autocorrelation). Our bootstrap approach can also be combined with other time series causal discovery algorithms and can be of considerable use in many real-world applications, especially when confidence measures for the links are desired.
This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.
Particle methods based on evolving the spatial derivatives of the solution were originally introduced to simulate reaction-diffusion processes, inspired by vortex methods for the Navier--Stokes equations. Such methods, referred to as gradient random walk methods, were extensively studied in the '90s and have several interesting features, such as being grid free, automatically adapting to the solution by concentrating elements where the gradient is large and significantly reducing the variance of the standard random walk approach. In this work, we revive these ideas by showing how to generalize the approach to a larger class of partial differential equations, including hyperbolic systems of conservation laws. To achieve this goal, we first extend the classical Monte Carlo method to relaxation approximation of systems of conservation laws, and subsequently consider a novel particle dynamics based on the spatial derivatives of the solution. The methodology, combined with asymptotic-preserving splitting discretization, yields a way to construct a new class of gradient-based Monte Carlo methods for hyperbolic systems of conservation laws. Several results in one spatial dimension for scalar equations and systems of conservation laws show that the new methods are very promising and yield remarkable improvements compared to standard Monte Carlo approaches, either in terms of variance reduction as well as in describing the shock structure.
V. Levenshtein first proposed the sequence reconstruction problem in 2001. This problem studies the model where the same sequence from some set is transmitted over multiple channels, and the decoder receives the different outputs. Assume that the transmitted sequence is at distance $d$ from some code and there are at most $r$ errors in every channel. Then the sequence reconstruction problem is to find the minimum number of channels required to recover exactly the transmitted sequence that has to be greater than the maximum intersection between two metric balls of radius $r$, where the distance between their centers is at least $d$. In this paper, we study the sequence reconstruction problem of permutations under the Hamming distance. In this model we define a Cayley graph over the symmetric group, study its properties and find the exact value of the largest intersection of its two metric balls for $d=2r$. Moreover, we give a lower bound on the largest intersection of two metric balls for $d=2r-1$.
A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.
We introduce a new tensor integration method for time-dependent PDEs that controls the tensor rank of the PDE solution via time-dependent diffeomorphic coordinate transformations. Such coordinate transformations are generated by minimizing the normal component of the PDE operator relative to the tensor manifold that approximates the PDE solution via a convex functional. The proposed method significantly improves upon and may be used in conjunction with the coordinate-adaptive algorithm we recently proposed in JCP (2023) Vol. 491, 112378, which is based on non-convex relaxations of the rank minimization problem and Riemannian optimization. Numerical applications demonstrating the effectiveness of the proposed coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.
Neural network pruning is a highly effective technique aimed at reducing the computational and memory demands of large neural networks. In this research paper, we present a novel approach to pruning neural networks utilizing Bayesian inference, which can seamlessly integrate into the training procedure. Our proposed method leverages the posterior probabilities of the neural network prior to and following pruning, enabling the calculation of Bayes factors. The calculated Bayes factors guide the iterative pruning. Through comprehensive evaluations conducted on multiple benchmarks, we demonstrate that our method achieves desired levels of sparsity while maintaining competitive accuracy.
To understand the ability and limitations of convolutional neural networks to generate time series that mimic complex temporal signals, we trained a generative adversarial network consisting of deep convolutional networks to generate chaotic time series and used nonlinear time series analysis to evaluate the generated time series. A numerical measure of determinism and the Lyapunov exponent, a measure of trajectory instability, showed that the generated time series well reproduce the chaotic properties of the original time series. However, error distribution analyses showed that large errors appeared at a low but non-negligible rate. Such errors would not be expected if the distribution were assumed to be exponential.
In the future, it is anticipated that software-defined networking (SDN) will become the preferred platform for deploying diverse networks. Compared to traditional networks, SDN separates the control and data planes for efficient domain-wide traffic routing and management. The controllers in the control plane are responsible for programming data plane forwarding devices, while the top layer, the application plane, enforces policies and programs the network. The different levels of the SDN use interfaces for communication. However, SDN faces challenges with traffic distribution, such as load imbalance, which can negatively affect the network performance. Consequently, developers have developed various SDN load-balancing solutions to enhance SDN effectiveness. In addition, researchers are considering the potential of implementing some artificial intelligence (AI) approaches into SDN to improve network resource usage and overall performance due to the fast growth of the AI field. This survey focuses on the following: Firstly, analyzing the SDN architecture and investigating the problem of load balancing in SDN. Secondly, categorizing AI-based load balancing methods and thoroughly assessing these mechanisms from various perspectives, such as the algorithm/technique employed, the tackled problem, and their strengths and weaknesses. Thirdly, summarizing the metrics utilized to measure the effectiveness of these techniques. Finally, identifying the trends and challenges of AI-based load balancing for future research.
Training robust speaker verification systems without speaker labels has long been a challenging task. Previous studies observed a large performance gap between self-supervised and fully supervised methods. In this paper, we apply a non-contrastive self-supervised learning framework called DIstillation with NO labels (DINO) and propose two regularization terms applied to embeddings in DINO. One regularization term guarantees the diversity of the embeddings, while the other regularization term decorrelates the variables of each embedding. The effectiveness of various data augmentation techniques are explored, on both time and frequency domain. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the regularized DINO framework in speaker verification. Our method achieves the state-of-the-art speaker verification performance under a single-stage self-supervised setting on VoxCeleb. Code has been made publicly available at //github.com/alibaba-damo-academy/3D-Speaker.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.