To simulate noisy boson sampling approximating it by only the lower-order multi-boson interferences (e.g., by a smaller number of interfering bosons and classical particles) is very popular idea. I show that the output data from any such classical simulations can be efficiently distinguished from that of the quantum device they try to simulate, even with finite noise in the latter. The distinguishing datasets can be the experimental estimates of some large probabilities, a wide class of such is presented. This is a sequel of \textit{Quantum} \textbf{5}, 423 (2021), where I present more accessible account of the main result enhanced by additional insight on the contribution from the higher-order multi-boson interferences in presence of noise.
We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank $3$): (a) The number of extreme points in an $n$-point order type, chosen uniformly at random from all such order types, is on average $4+o(1)$. For labeled order types, this number has average $4- \frac{8}{n^2 - n +2}$ and variance at most $3$. (b) The (labeled) order types read off a set of $n$ points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e. such sampling typically encounters only a vanishingly small fraction of all order types of the given size. Result (a) generalizes to arbitrary dimension $d$ for labeled order types with the average number of extreme points $2d+o(1)$ and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the following relative of the Erd\H{o}s-Szekeres theorem: for any fixed $k$, as $n \to \infty$, a proportion $1 - O(1/n)$ of the $n$-point simple order types contain a triangle enclosing a convex $k$-chain over an edge. For the unlabeled case in (a), we prove that for any antipodal, finite subset of the $2$-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral or one of $A_4$, $S_4$ or $A_5$ (and each case is possible). These are the finite subgroups of $SO(3)$ and our proof follows the lines of their characterization by Felix Klein.
A motif intuitively is a short time series that repeats itself approximately the same within a larger time series. Such motifs often represent concealed structures, such as heart beats in an ECG recording, or sleep spindles in EEG sleep data. Motif discovery (MD) is the task of finding such motifs in a given input series. As there are varying definitions of what exactly a motif is, a number of algorithms exist. As central parameters they all take the length l of the motif and the maximal distance r between the motif's occurrences. In practice, however, suitable values for r are very hard to determine upfront, and the found motifs show a high variability. Setting the wrong input value will result in a motif that is not distinguishable from noise. Accordingly, finding an interesting motif with these methods requires extensive trial-and-error. We present a different approach to the MD problem. We define k-Motiflets as the set of exactly k occurrences of a motif of length l, whose maximum pairwise distance is minimal. This turns the MD problem upside-down: Our central parameter is not the distance threshold r, but the desired size k of a motif set, which we show is considerably more intuitive and easier to set. Based on this definition, we present exact and approximate algorithms for finding k-Motiflets and analyze their complexity. To further ease the use of our method, we describe extensions to automatically determine the right/suitable values for its input parameters. Thus, for the first time, extracting meaningful motif sets without any a-priori knowledge becomes feasible. By evaluating real-world use cases and comparison to 4 state-of-the-art MD algorithms, we show that our proposed algorithm is (a) quantitatively superior, finding larger motif sets at higher similarity, (b) qualitatively better, leading to clearer and easier to interpret motifs, and (c) has the lowest runtime.
In selection processes such as hiring, promotion, and college admissions, implicit bias toward socially-salient attributes such as race, gender, or sexual orientation of candidates is known to produce persistent inequality and reduce aggregate utility for the decision maker. Interventions such as the Rooney Rule and its generalizations, which require the decision maker to select at least a specified number of individuals from each affected group, have been proposed to mitigate the adverse effects of implicit bias in selection. Recent works have established that such lower-bound constraints can be very effective in improving aggregate utility in the case when each individual belongs to at most one affected group. However, in several settings, individuals may belong to multiple affected groups and, consequently, face more extreme implicit bias due to this intersectionality. We consider independently drawn utilities and show that, in the intersectional case, the aforementioned non-intersectional constraints can only recover part of the total utility achievable in the absence of implicit bias. On the other hand, we show that if one includes appropriate lower-bound constraints on the intersections, almost all the utility achievable in the absence of implicit bias can be recovered. Thus, intersectional constraints can offer a significant advantage over a reductionist dimension-by-dimension non-intersectional approach to reducing inequality.
The main two algorithms for computing the numerical radius are the level-set method of Mengi and Overton and the cutting-plane method of Uhlig. Via new analyses, we explain why the cutting-plane approach is sometimes much faster or much slower than the level-set one and then propose a new hybrid algorithm that remains efficient in all cases. For matrices whose fields of values are a circular disk centered at the origin, we show that the cost of Uhlig's method blows up with respect to the desired relative accuracy. More generally, we also analyze the local behavior of Uhlig's cutting procedure at outermost points in the field of values, showing that it often has a fast Q-linear rate of convergence and is Q-superlinear at corners. Finally, we identify and address inefficiencies in both the level-set and cutting-plane approaches and propose refined versions of these techniques.
This paper investigates the problem of regret minimization in linear time-varying (LTV) dynamical systems. Due to the simultaneous presence of uncertainty and non-stationarity, designing online control algorithms for unknown LTV systems remains a challenging task. At a cost of NP-hard offline planning, prior works have introduced online convex optimization algorithms, although they suffer from nonparametric rate of regret. In this paper, we propose the first computationally tractable online algorithm with regret guarantees that avoids offline planning over the state linear feedback policies. Our algorithm is based on the optimism in the face of uncertainty (OFU) principle in which we optimistically select the best model in a high confidence region. Our algorithm is then more explorative when compared to previous approaches. To overcome non-stationarity, we propose either a restarting strategy (R-OFU) or a sliding window (SW-OFU) strategy. With proper configuration, our algorithm is attains sublinear regret $O(T^{2/3})$. These algorithms utilize data from the current phase for tracking variations on the system dynamics. We corroborate our theoretical findings with numerical experiments, which highlight the effectiveness of our methods. To the best of our knowledge, our study establishes the first model-based online algorithm with regret guarantees under LTV dynamical systems.
In this paper, we study the trace regression when a matrix of parameters B* is estimated via convex relaxation of a rank-penalized regression or via non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on rank, coherence, or spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove restricted strong convexity for the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the penalty parameter to be above a certain theory-inspired threshold that depends on the observation noise and the sampling operator which may be unknown in practice. Next, we extend the error bounds to the cases when the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a nearly-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.
Bayesian models have many desirable properties, most notable is their ability to generalize from limited data and to properly estimate the uncertainty in their predictions. However, these benefits come at a steep computational cost as Bayesian inference, in most cases, is computationally intractable. One popular approach to alleviate this problem is using a Monte-Carlo estimation with an ensemble of models sampled from the posterior. However, this approach still comes at a significant computational cost, as one needs to store and run multiple models at test time. In this work, we investigate how to best distill an ensemble's predictions using an efficient model. First, we argue that current approaches that simply return distribution over predictions cannot compute important properties, such as the covariance between predictions, which can be valuable for further processing. Second, in many limited data settings, all ensemble members achieve nearly zero training loss, namely, they produce near-identical predictions on the training set which results in sub-optimal distilled models. To address both problems, we propose a novel and general distillation approach, named Functional Ensemble Distillation (FED), and we investigate how to best distill an ensemble in this setting. We find that learning the distilled model via a simple augmentation scheme in the form of mixup augmentation significantly boosts the performance. We evaluated our method on several tasks and showed that it achieves superior results in both accuracy and uncertainty estimation compared to current approaches.
Measuring the stability of conclusions derived from Ordinary Least Squares linear regression is critically important, but most metrics either only measure local stability (i.e. against infinitesimal changes in the data), or are only interpretable under statistical assumptions. Recent work proposes a simple, global, finite-sample stability metric: the minimum number of samples that need to be removed so that rerunning the analysis overturns the conclusion, specifically meaning that the sign of a particular coefficient of the estimated regressor changes. However, besides the trivial exponential-time algorithm, the only approach for computing this metric is a greedy heuristic that lacks provable guarantees under reasonable, verifiable assumptions; the heuristic provides a loose upper bound on the stability and also cannot certify lower bounds on it. We show that in the low-dimensional regime where the number of covariates is a constant but the number of samples is large, there are efficient algorithms for provably estimating (a fractional version of) this metric. Applying our algorithms to the Boston Housing dataset, we exhibit regression analyses where we can estimate the stability up to a factor of $3$ better than the greedy heuristic, and analyses where we can certify stability to dropping even a majority of the samples.
Gradient based meta-learning methods are prone to overfit on the meta-training set, and this behaviour is more prominent with large and complex networks. Moreover, large networks restrict the application of meta-learning models on low-power edge devices. While choosing smaller networks avoid these issues to a certain extent, it affects the overall generalization leading to reduced performance. Clearly, there is an approximately optimal choice of network architecture that is best suited for every meta-learning problem, however, identifying it beforehand is not straightforward. In this paper, we present MetaDOCK, a task-specific dynamic kernel selection strategy for designing compressed CNN models that generalize well on unseen tasks in meta-learning. Our method is based on the hypothesis that for a given set of similar tasks, not all kernels of the network are needed by each individual task. Rather, each task uses only a fraction of the kernels, and the selection of the kernels per task can be learnt dynamically as a part of the inner update steps. MetaDOCK compresses the meta-model as well as the task-specific inner models, thus providing significant reduction in model size for each task, and through constraining the number of active kernels for every task, it implicitly mitigates the issue of meta-overfitting. We show that for the same inference budget, pruned versions of large CNN models obtained using our approach consistently outperform the conventional choices of CNN models. MetaDOCK couples well with popular meta-learning approaches such as iMAML. The efficacy of our method is validated on CIFAR-fs and mini-ImageNet datasets, and we have observed that our approach can provide improvements in model accuracy of up to 2% on standard meta-learning benchmark, while reducing the model size by more than 75%.
The CUR decomposition is a technique for low-rank approximation that selects small subsets of the columns and rows of a given matrix to use as bases for its column and rowspaces. It has recently attracted much interest, as it has several advantages over traditional low rank decompositions based on orthonormal bases. These include the preservation of properties such as sparsity or non-negativity, the ability to interpret data, and reduced storage requirements. The problem of finding the skeleton sets that minimize the norm of the residual error is known to be NP-hard, but classical pivoting schemes such as column pivoted QR work tend to work well in practice. When combined with randomized dimension reduction techniques, classical pivoting based methods become particularly effective, and have proven capable of very rapidly computing approximate CUR decompositions of large, potentially sparse, matrices. Another class of popular algorithms for computing CUR de-compositions are based on drawing the columns and rows randomly from the full index sets, using specialized probability distributions based on leverage scores. Such sampling based techniques are particularly appealing for very large scale problems, and are well supported by theoretical performance guarantees. This manuscript provides a comparative study of the various randomized algorithms for computing CUR decompositions that have recently been proposed. Additionally, it proposes some modifications and simplifications to the existing algorithms that leads to faster execution times.