亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An emerging theme in artificial intelligence research is the creation of models to simulate the decisions and behavior of specific people, in domains including game-playing, text generation, and artistic expression. These models go beyond earlier approaches in the way they are tailored to individuals, and the way they are designed for interaction rather than simply the reproduction of fixed, pre-computed behaviors. We refer to these as mimetic models, and in this paper we develop a framework for characterizing the ethical and social issues raised by their growing availability. Our framework includes a number of distinct scenarios for the use of such models, and considers the impacts on a range of different participants, including the target being modeled, the operator who deploys the model, and the entities that interact with it.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Analysis · 模型評估 · 判別器 · 可約的 ·
2022 年 9 月 15 日

Given a discriminating neural network, the problem of fairness improvement is to systematically reduce discrimination without significantly scarifies its performance (i.e., accuracy). Multiple categories of fairness improving methods have been proposed for neural networks, including pre-processing, in-processing and post-processing. Our empirical study however shows that these methods are not always effective (e.g., they may improve fairness by paying the price of huge accuracy drop) or even not helpful (e.g., they may even worsen both fairness and accuracy). In this work, we propose an approach which adaptively chooses the fairness improving method based on causality analysis. That is, we choose the method based on how the neurons and attributes responsible for unfairness are distributed among the input attributes and the hidden neurons. Our experimental evaluation shows that our approach is effective (i.e., always identify the best fairness improving method) and efficient (i.e., with an average time overhead of 5 minutes).

In recent years, deep learning has been a topic of interest in almost all disciplines due to its impressive empirical success in analyzing complex data sets, such as imaging, genetics, climate, and medical data. While most of the developments are treated as black-box machines, there is an increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning is proven to be promising in this regard. However, the recent developments do not address the situations of ultra-high dimensional and highly correlated feature selection in addition to the high noise level. In this article, we propose a novel screening and cleaning strategy with the aid of deep learning for the cluster-level discovery of highly correlated predictors with a controlled error rate. A thorough empirical evaluation over a wide range of simulated scenarios demonstrates the effectiveness of the proposed method by achieving high power while having a minimal number of false discoveries. Furthermore, we implemented the algorithm in the riboflavin (vitamin $B_2$) production dataset in the context of understanding the possible genetic association with riboflavin production. The gain of the proposed methodology is illustrated by achieving lower prediction error compared to other state-of-the-art methods.

This article emphasizes that NLP as a science seeks to make inferences about the performance effects that result from applying one method (compared to another method) in the processing of natural language. Yet NLP research in practice usually does not achieve this goal: In NLP research articles, typically only a few models are compared. Each model results from a specific procedural pipeline (here named processing system) that is composed of a specific collection of methods that are used in preprocessing, pretraining, hyperparameter tuning, and training on the target task. To make generalizing inferences about the performance effect that is caused by applying some method A vs. another method B, it is not sufficient to compare a few specific models that are produced by a few specific (probably incomparable) processing systems. Rather, the following procedure would allow drawing inferences about methods' performance effects: (1) A population of processing systems that researchers seek to infer to has to be defined. (2) A random sample of processing systems from this population is drawn. (The drawn processing systems in the sample will vary with regard to the methods they apply along their procedural pipelines and also will vary regarding the compositions of their training and test data sets used for training and evaluation.) (3) Each processing system is applied once with method A and once with method B. (4) Based on the sample of applied processing systems, the expected generalization errors of method A and method B are approximated. (5) The difference between the expected generalization errors of method A and method B is the estimated average treatment effect due to applying method A compared to method B in the population of processing systems.

To efficiently analyse system reliability, graphical tools such as fault trees and Bayesian networks are widely adopted. In this article, instead of conventional graphical tools, we apply a probabilistic graphical model called the chain event graph (CEG) to represent failure and deteriorating processes of a system. The CEG is derived from an event tree and can flexibly represent the unfolding of the asymmetric processes. We customise a domain-specific intervention on the CEG called the remedial intervention for maintenance. This fixes the root causes of a failure and returns the status of the system to as good as new: a novel type of intervention designed specifically for reliability applications. The semantics of the CEG are expressive enough to capture the necessary intervention calculus. Furthermore through the bespoke causal algebras the CEG provides a transparent framework to guide and express the rationale behind predictive inferences about the effects of various types of the remedial intervention. A back-door theorem is adapted to apply to these interventions to help discover when causal effects can be identified from a partially observed system.

Nowadays Artificial Intelligence (AI) has become a fundamental component of healthcare applications, both clinical and remote, but the best performing AI systems are often too complex to be self-explaining. Explainable AI (XAI) techniques are defined to unveil the reasoning behind the system's predictions and decisions, and they become even more critical when dealing with sensitive and personal health data. It is worth noting that XAI has not gathered the same attention across different research areas and data types, especially in healthcare. In particular, many clinical and remote health applications are based on tabular and time series data, respectively, and XAI is not commonly analysed on these data types, while computer vision and Natural Language Processing (NLP) are the reference applications. To provide an overview of XAI methods that are most suitable for tabular and time series data in the healthcare domain, this paper provides a review of the literature in the last 5 years, illustrating the type of generated explanations and the efforts provided to evaluate their relevance and quality. Specifically, we identify clinical validation, consistency assessment, objective and standardised quality evaluation, and human-centered quality assessment as key features to ensure effective explanations for the end users. Finally, we highlight the main research challenges in the field as well as the limitations of existing XAI methods.

Exploring search spaces is one of the most unpredictable challenges that has attracted the interest of researchers for decades. One way to handle unpredictability is to characterise the search spaces and take actions accordingly. A well-characterised search space can assist in mapping the problem states to a set of operators for generating new problem states. In this paper, a landscape analysis-based set of features has been analysed using the most renown machine learning approaches to determine the optimal feature set. However, in order to deal with problem complexity and induce commonality for transferring experience across domains, the selection of the most representative features remains crucial. The proposed approach analyses the predictivity of a set of features in order to determine the best categorization.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司