亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Previous work optimizes traditional active learning (AL) processes with incremental neural network architecture search (Active-iNAS) based on data complexity change, which improves the accuracy and learning efficiency. However, Active-iNAS trains several models and selects the model with the best generalization performance for querying the subsequent samples after each active learning cycle. The independent training processes lead to an insufferable computational budget, which is significantly inefficient and limits search flexibility and final performance. To address this issue, we propose a novel active strategy with the method called structured variational inference (SVI) or structured neural depth search (SNDS) whereby we could use the gradient descent method in neural network depth search during AL processes. At the same time, we theoretically demonstrate that the current VI-based methods based on the mean-field assumption could lead to poor performance. We apply our strategy using three querying techniques and three datasets and show that our strategy outperforms current methods.

相關內容

主(zhu)動(dong)學(xue)(xue)習(xi)(xi)是(shi)(shi)機器學(xue)(xue)習(xi)(xi)(更(geng)普遍的(de)說是(shi)(shi)人工智能)的(de)一(yi)個子領域,在(zai)統計學(xue)(xue)領域也叫(jiao)查詢學(xue)(xue)習(xi)(xi)、最優(you)實(shi)驗設計。“學(xue)(xue)習(xi)(xi)模(mo)塊(kuai)(kuai)”和“選擇策略”是(shi)(shi)主(zhu)動(dong)學(xue)(xue)習(xi)(xi)算法(fa)的(de)2個基本(ben)且(qie)重要(yao)的(de)模(mo)塊(kuai)(kuai)。 主(zhu)動(dong)學(xue)(xue)習(xi)(xi)是(shi)(shi)“一(yi)種(zhong)學(xue)(xue)習(xi)(xi)方法(fa),在(zai)這種(zhong)方法(fa)中(zhong),學(xue)(xue)生(sheng)會主(zhu)動(dong)或體(ti)驗性(xing)地參與(yu)學(xue)(xue)習(xi)(xi)過程,并(bing)且(qie)根(gen)據學(xue)(xue)生(sheng)的(de)參與(yu)程度(du),有不同程度(du)的(de)主(zhu)動(dong)學(xue)(xue)習(xi)(xi)。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“學(xue)(xue)生(sheng)除了被動(dong)地聽(ting)課以(yi)外,還(huan)從(cong)事其他活動(dong)。” 在(zai)高(gao)等教育研究協(xie)會(ASHE)的(de)一(yi)份報告中(zhong),作(zuo)者討論了各種(zhong)促(cu)進主(zhu)動(dong)學(xue)(xue)習(xi)(xi)的(de)方法(fa)。他們引用(yong)了一(yi)些文獻(xian),這些文獻(xian)表明學(xue)(xue)生(sheng)不僅要(yao)做聽(ting),還(huan)必(bi)須做更(geng)多的(de)事情(qing)才能學(xue)(xue)習(xi)(xi)。他們必(bi)須閱讀,寫作(zuo),討論并(bing)參與(yu)解決問題。此過程涉及三個學(xue)(xue)習(xi)(xi)領域,即(ji)知(zhi)識(shi),技(ji)能和態度(du)(KSA)。這種(zhong)學(xue)(xue)習(xi)(xi)行為(wei)分類(lei)法(fa)可以(yi)被認為(wei)是(shi)(shi)“學(xue)(xue)習(xi)(xi)過程的(de)目(mu)標”。特別是(shi)(shi),學(xue)(xue)生(sheng)必(bi)須從(cong)事諸如(ru)分析,綜合和評估之(zhi)類(lei)的(de)高(gao)級思維任務。

The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution.

Contemporary graph learning algorithms are not well-defined for large molecules since they do not consider the hierarchical interactions among the atoms, which are essential to determine the molecular properties of macromolecules. In this work, we propose Multiresolution Graph Transformers (MGT), the first graph transformer architecture that can learn to represent large molecules at multiple scales. MGT can learn to produce representations for the atoms and group them into meaningful functional groups or repeating units. We also introduce Wavelet Positional Encoding (WavePE), a new positional encoding method that can guarantee localization in both spectral and spatial domains. Our proposed model achieves competitive results on two macromolecule datasets consisting of polymers and peptides, and one drug-like molecule dataset. Importantly, our model outperforms other state-of-the-art methods and achieves chemical accuracy in estimating molecular properties (e.g., GAP, HOMO and LUMO) calculated by Density Functional Theory (DFT) in the polymers dataset. Furthermore, the visualizations, including clustering results on macromolecules and low-dimensional spaces of their representations, demonstrate the capability of our methodology in learning to represent long-range and hierarchical structures. Our PyTorch implementation is publicly available at //github.com/HySonLab/Multires-Graph-Transformer

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司