亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simulation-based inference (SBI) enables amortized Bayesian inference for simulators with implicit likelihoods. But when we are primarily interested in the quality of predictive simulations, or when the model cannot exactly reproduce the observed data (i.e., is misspecified), targeting the Bayesian posterior may be overly restrictive. Generalized Bayesian Inference (GBI) aims to robustify inference for (misspecified) simulator models, replacing the likelihood-function with a cost function that evaluates the goodness of parameters relative to data. However, GBI methods generally require running multiple simulations to estimate the cost function at each parameter value during inference, making the approach computationally infeasible for even moderately complex simulators. Here, we propose amortized cost estimation (ACE) for GBI to address this challenge: We train a neural network to approximate the cost function, which we define as the expected distance between simulations produced by a parameter and observed data. The trained network can then be used with MCMC to infer GBI posteriors for any observation without running additional simulations. We show that, on several benchmark tasks, ACE accurately predicts cost and provides predictive simulations that are closer to synthetic observations than other SBI methods, especially for misspecified simulators. Finally, we apply ACE to infer parameters of the Hodgkin-Huxley model given real intracellular recordings from the Allen Cell Types Database. ACE identifies better data-matching parameters while being an order of magnitude more simulation-efficient than a standard SBI method. In summary, ACE combines the strengths of SBI methods and GBI to perform robust and simulation-amortized inference for scientific simulators.

相關內容

Sensor devices have been increasingly used in engineering and health studies recently, and the captured multi-dimensional activity and vital sign signals can be studied in association with health outcomes to inform public health. The common approach is the scalar-on-function regression model, in which health outcomes are the scalar responses while high-dimensional sensor signals are the functional covariates, but how to effectively interpret results becomes difficult. In this study, we propose a new Functional Adaptive Double-Sparsity (FadDoS) estimator based on functional regularization of sparse group lasso with multiple functional predictors, which can achieve global sparsity via functional variable selection and local sparsity via zero-subinterval identification within coefficient functions. We prove that the FadDoS estimator converges at a bounded rate and satisfies the oracle property under mild conditions. Extensive simulation studies confirm the theoretical properties and exhibit excellent performances compared to existing approaches. Application to a Kinect sensor study that utilized an advanced motion sensing device tracking human multiple joint movements and conducted among community-dwelling elderly demonstrates how the FadDoS estimator can effectively characterize the detailed association between joint movements and physical health assessments. The proposed method is not only effective in Kinect sensor analysis but also applicable to broader fields, where multi-dimensional sensor signals are collected simultaneously, to expand the use of sensor devices in health studies and facilitate sensor data analysis.

In this manuscript, we propose to utilize the generative neural network-based variational autoencoder for channel estimation. The variational autoencoder models the underlying true but unknown channel distribution as a conditional Gaussian distribution in a novel way. The derived channel estimator exploits the internal structure of the variational autoencoder to parameterize an approximation of the mean squared error optimal estimator resulting from the conditional Gaussian channel models. We provide a rigorous analysis under which conditions a variational autoencoder-based estimator is mean squared error optimal. We then present considerations that make the variational autoencoder-based estimator practical and propose three different estimator variants that differ in their access to channel knowledge during the training and evaluation phase. In particular, the proposed estimator variant trained solely on noisy pilot observations is particularly noteworthy as it does not require access to noise-free, ground-truth channel data during training or evaluation. Extensive numerical simulations first analyze the internal behavior of the variational autoencoder-based estimators and then demonstrate excellent channel estimation performance compared to related classical and machine learning-based state-of-the-art channel estimators.

We consider the problem of Imitation Learning (IL) by actively querying noisy expert for feedback. While imitation learning has been empirically successful, much of prior work assumes access to noiseless expert feedback which is not practical in many applications. In fact, when one only has access to noisy expert feedback, algorithms that rely on purely offline data (non-interactive IL) can be shown to need a prohibitively large number of samples to be successful. In contrast, in this work, we provide an interactive algorithm for IL that uses selective sampling to actively query the noisy expert for feedback. Our contributions are twofold: First, we provide a new selective sampling algorithm that works with general function classes and multiple actions, and obtains the best-known bounds for the regret and the number of queries. Next, we extend this analysis to the problem of IL with noisy expert feedback and provide a new IL algorithm that makes limited queries. Our algorithm for selective sampling leverages function approximation, and relies on an online regression oracle w.r.t.~the given model class to predict actions, and to decide whether to query the expert for its label. On the theoretical side, the regret bound of our algorithm is upper bounded by the regret of the online regression oracle, while the query complexity additionally depends on the eluder dimension of the model class. We complement this with a lower bound that demonstrates that our results are tight. We extend our selective sampling algorithm for IL with general function approximation and provide bounds on both the regret and the number of queries made to the noisy expert. A key novelty here is that our regret and query complexity bounds only depend on the number of times the optimal policy (and not the noisy expert, or the learner) go to states that have a small margin.

Neural Posterior Estimation methods for simulation-based inference can be ill-suited for dealing with posterior distributions obtained by conditioning on multiple observations, as they tend to require a large number of simulator calls to learn accurate approximations. In contrast, Neural Likelihood Estimation methods can handle multiple observations at inference time after learning from individual observations, but they rely on standard inference methods, such as MCMC or variational inference, which come with certain performance drawbacks. We introduce a new method based on conditional score modeling that enjoys the benefits of both approaches. We model the scores of the (diffused) posterior distributions induced by individual observations, and introduce a way of combining the learned scores to approximately sample from the target posterior distribution. Our approach is sample-efficient, can naturally aggregate multiple observations at inference time, and avoids the drawbacks of standard inference methods.

Sampling conditional distributions is a fundamental task for Bayesian inference and density estimation. Generative models, such as normalizing flows and generative adversarial networks, characterize conditional distributions by learning a transport map that pushes forward a simple reference (e.g., a standard Gaussian) to a target distribution. While these approaches successfully describe many non-Gaussian problems, their performance is often limited by parametric bias and the reliability of gradient-based (adversarial) optimizers to learn these transformations. This work proposes a non-parametric generative model that iteratively maps reference samples to the target. The model uses block-triangular transport maps, whose components are shown to characterize conditionals of the target distribution. These maps arise from solving an optimal transport problem with a weighted $L^2$ cost function, thereby extending the data-driven approach in [Trigila and Tabak, 2016] for conditional sampling. The proposed approach is demonstrated on a two dimensional example and on a parameter inference problem involving nonlinear ODEs.

A financial portfolio contains assets that offer a return with a certain level of risk. To maximise returns or minimise risk, the portfolio must be optimised - the ideal combination of optimal quantities of assets must be found. The number of possible combinations is vast. Furthermore, to make the problem realistic, constraints can be imposed on the number of assets held in the portfolio and the maximum proportion of the portfolio that can be allocated to an asset. This problem is unsolvable using quadratic programming, which means that the optimal solution cannot be calculated. A group of algorithms, called metaheuristics, can find near-optimal solutions in a practical computing time. These algorithms have been successfully used in constrained portfolio optimisation. However, in past studies the computation time of metaheuristics is not limited, which means that the results differ in both quality and computation time, and cannot be easily compared. This study proposes a different way of testing metaheuristics, limiting their computation time to a certain duration, yielding results that differ only in quality. Given that in some use cases the priority is the quality of the solution and in others the speed, time limits of 1, 5 and 25 seconds were tested. Three metaheuristics - simulated annealing, tabu search, and genetic algorithm - were evaluated on five sets of historical market data with different numbers of assets. Although the metaheuristics could not find a competitive solution in 1 second, simulated annealing found a near-optimal solution in 5 seconds in all but one dataset. The lowest quality solutions were obtained by genetic algorithm.

Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional MCMC, by constructing an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted subsample of the data. While efficient to compute, the resulting gradient estimator may exhibit a high variance and impact sampler performance. The problem of variance control has been traditionally addressed by constructing a better stochastic gradient estimator, often using control variates. We propose to use a discrete, non-uniform probability distribution to preferentially subsample data points that have a greater impact on the stochastic gradient. In addition, we present a method of adaptively adjusting the subsample size at each iteration of the algorithm, so that we increase the subsample size in areas of the sample space where the gradient is harder to estimate. We demonstrate that such an approach can maintain the same level of accuracy while substantially reducing the average subsample size that is used.

Physics-informed neural networks (PINNs) are a newly emerging research frontier in machine learning, which incorporate certain physical laws that govern a given data set, e.g., those described by partial differential equations (PDEs), into the training of the neural network (NN) based on such a data set. In PINNs, the NN acts as the solution approximator for the PDE while the PDE acts as the prior knowledge to guide the NN training, leading to the desired generalization performance of the NN when facing the limited availability of training data. However, training PINNs is a non-trivial task largely due to the complexity of the loss composed of both NN and physical law parts. In this work, we propose a new PINN training framework based on the multi-task optimization (MTO) paradigm. Under this framework, multiple auxiliary tasks are created and solved together with the given (main) task, where the useful knowledge from solving one task is transferred in an adaptive mode to assist in solving some other tasks, aiming to uplift the performance of solving the main task. We implement the proposed framework and apply it to train the PINN for addressing the traffic density prediction problem. Experimental results demonstrate that our proposed training framework leads to significant performance improvement in comparison to the traditional way of training the PINN.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司