本文探討了計算機如何使用自監督學習在沒有強監督的情況下學習視覺對象的結構。我們演示了我們可以使用一個以重構為關鍵學習信號的自動編碼框架來學習對象的結構表示。我們通過工程瓶頸將對象結構從其他變化因素中分離出來來做到這一點。此外,設計了以2D和3D物體地標或3D網格形式表示物體結構的瓶頸。具體來說,我們開發了一種自動發現2D對象地標的方法,無需任何注釋,該方法使用帶有2D關鍵點瓶頸的條件自動編碼器,將表示為2D關鍵點的姿勢和外觀分離開來。**盡管自監督學習方法能夠學習穩定的物體地標,但自動發現的地標與人類標注者標注的地標不一致。為解決這個問題,本文提出一種方法,通過引入一種新的地標自編碼,將未配對的經驗先驗注入到條件自編碼器中,可以利用對抗性學習中使用的強大圖像鑒別器。**這些條件自動編碼方法的一個副產品是,可以通過操縱瓶頸中的關鍵點來交互控制生成。我們利用這一特點在一個新的方法進行交互式3D形狀變形。該方法以自監督的方式訓練,使用自動發現的3D地標來對齊對3D形狀。在測試時間內,該方法允許用戶通過發現的三維物體標志進行物體形狀的交互變形。最后,我們提出了一種利用光幾何自編碼器恢復物體類別三維形狀的方法,而不需要任何三維注釋。它使用視頻進行訓練,并學會將輸入的圖像分解為剛性的姿勢、紋理和可變形的形狀模型。
是一所英國研究型大學,也是羅素大學集團、英國“G5超級精英大學”,歐洲頂尖大學科英布拉集團、歐洲研究型大學聯盟的核心成員。牛津大學培養了眾多社會名人,包括了27位英國首相、60位諾貝爾獎得主以及數十位世界各國的皇室成員和政治領袖。2016年9月,泰晤士高等教育發布了2016-2017年度世界大學排名,其中牛津大學排名第一。
深度學習的出現為許多基本的計算機視覺任務帶來了巨大的進展,如分類、檢測和分割,這些任務描述了圖像和視頻中物體的類別和位置。在監督學習方面也做了很多工作--教機器使用人類注釋的標簽來解決這些任務。然而,機器只知道某些物體的名稱和位置是不夠的;許多任務需要對復雜的物理世界有更深入的了解--例如,物體與周圍環境的互動(通常通過創造陰影、反射、表面變形和其他視覺效果)。此外,在嚴重依賴人類監督的情況下,訓練模型來解決這些任務,成本很高,而且不切實際,難以推廣。因此,本論文探索了兩個方向:首先,我們的目標是超越分割,解決一個全新的任務:將物體與其相關的視覺效果(如陰影、反射或附著的物體)分組;其次,我們以自我監督的方式解決視頻物體分割的基本任務,而不依賴任何人類注釋。
//ora.ox.ac.uk/objects/uuid:6c722b16-1a13-4ae1-aebb-fb7026820a64
為了將物體與其相關的視覺效果自動分組,我們采用了一種分層的方法:我們的目標是將視頻分解成特定的物體層,其中包含所有與物體一起移動的元素。這些層的一個應用是,它們可以以新的方式重新組合,以產生一個高度真實的、經過改變的原始視頻版本(例如,刪除或復制物體,或改變其運動的時間)。這里的關鍵是利用卷積神經網絡的自然屬性來獲得輸入視頻的分層分解。我們設計了一個神經網絡,通過對視頻的過度擬合,為視頻輸出層。我們首先介紹了一種針對人類的方法,然后展示了如何將其適應于任意的物體類別,如動物或汽車。我們的第二個任務是視頻物體分割:為視頻中的物體產生像素級的標簽(段)。我們以前的工作是在單個視頻上進行優化,而在這里,我們采取了一種數據驅動的方法,以自我監督的方式對大量的視頻語料庫進行訓練。我們考慮了兩種不同的任務設置:(1)半監督物體分割,即為單一幀提供初始物體掩碼,該方法必須將該掩碼傳播到其余幀;(2)移動物體發現,即不提供掩碼,該方法必須分割突出的移動物體。我們探討了兩種不同的輸入流。RGB和光流,并討論它們與人類視覺系統的聯系。
在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。
//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。
深度學習推動了應用的爆炸式增長,然而訓練深度神經網絡通常需要昂貴的人工注釋。在這篇論文中,我們探索了在訓練深度神經網絡時避免大量依賴人工注釋示例的替代方案。具體來說,要么采用自監督方法來自動糾正自由獲得的數據標簽,要么完全放棄使用人工標簽,而是利用音頻和視覺信息的自然共生來學習視頻中的對象表示。越來越多的數字數據通常會提供噪聲標簽,這些標簽可以用來監督學習過程。傳統的數據預處理包括在訓練識別模型之前糾正/清理數據,但這可能需要大量的人工工作。我們考慮自動更正注釋噪聲,從而避免了昂貴的手動注釋的需要。我們構建和擴展了最近的突破,使用一致性損失(consistency loss)和空間記憶映射(space memory map)來提供靈活的實例級注冊,從而實現更大的泛化。進一步探索了多模態感覺流,利用模態冗余,即模態之間的重疊信息,為模型提供自監督。表示是通過利用不同的模式來學習的,而不使用任何人類注釋的標簽。我們將使用三個不同的應用程序演示此技術。
首先,我們自動管理一個大型音頻數據集VGG-Sound,使用視覺引導收集了超過200k的視頻,并在此基礎上進行訓練,生成最先進的音頻識別模型。其次,我們提出了一種改進和擴展最近聲源定位技術的方法,通過引入一種機制來挖掘硬樣本并自動將其添加到對比學習公式中。最后,與在一個特定領域執行的現有視聽同步任務不同,我們建議通過探索使用幾種基于transformer的體系結構來解決開放世界設置中的同步問題。通過這些模型,我們在具有挑戰性的語音數據集中獲得了最先進的結果,并在一般聲音數據集中顯示了出色的泛化效果。
我們對世界的體驗是多模態的,然而深度學習網絡傳統上是為圖像、音頻片段或文本等單模態輸入而設計和訓練的。在這篇論文中,我們提出了策略來利用多模態信息(以視覺、文本、語音和非語音音頻的形式)來自動理解以人為中心的視頻。本文提出的關鍵思想是 (i)跨模態監督,(ii)自監督表示學習和(iii)模態融合。在跨模態監督中,來自監督豐富的模態的數據標簽被用于學習另一個缺乏監督的目標模態的表示,從而避免了在目標模態域中昂貴的手動注釋的需要。這有效地利用了模態之間的冗余或重疊信息。我們將展現該技術在三個不同任務中的效用; 首先,我們使用人臉識別和視覺主動說話人檢測來管理一個被稱為VoxCeleb的大規模人類語音視聽數據集,對其進行訓練,產生了最先進的說話人識別模型; 其次,我們訓練了一個基于文本的模型來預測僅從轉錄的語音中的動作標簽,并將這些標簽轉移到相應的視頻中。使用這些標簽進行的訓練使我們能夠在完全監督的動作識別模型上表現得更好,而這些模型是通過昂貴的人工監督進行訓練的; 第三,我們從為情感識別而訓練的人臉模型中提取信息到語音領域,而在語音領域,手動情感標注是昂貴的。本文探討的第二個關鍵思想是利用模態冗余進行自監督表示學習。在這里,我們學習了在沒有任何人工監督的情況下,在任何一種模式下的視聽表示,特別是對于人類的面孔和聲音。與現有的表示不同,我們的聯合表示支持從音頻到視覺的跨模態檢索,反之亦然。然后,我們將這項工作擴展到明確地消除習得偏見,從而實現更大的泛化。最后,我們通過開發新的模態融合架構,有效地結合不同模式下的互補信息。通過將視頻中的多個模態的信息提取到一個單一的、緊湊的視頻表示,我們實現了對可能丟失、損壞、閉塞或具有不同級別背景噪聲的單峰輸入的魯棒性。利用這些模型,我們在動作識別和視頻文本檢索方面都取得了最先進的結果。
//www.robots.ox.ac.uk/~vgg/publications/2020/Nagrani20e/nagrani20e.pdf
近年來,人工智能研究取得了驚人的發展和進步。這些進步主要是在三個方面取得的:計算機視覺、自然語言處理和機器人技術。例如,圖像識別被廣泛認為是計算機視覺的圣杯,而語言建模和翻譯一直是自然語言處理的基本任務。然而,許多實際應用程序和任務需要解決的不僅僅是這些特定于領域的問題,而是需要解決涉及所有三個領域的問題。一個自主系統不僅需要能夠識別圖像中的物體,而且還需要解釋自然語言的描述或命令,并理解它們如何與它所感知的視覺觀察相關聯。此外,機器人需要利用這些信息進行決策,并決定為了完成任務而采取哪些物理行動。在本文的第一部分,我提出了一種學習如何將自然語言與三維形狀聯系起來的方法,使系統能夠將文本描述中描述的“圓”等詞與三維物體中的圓的幾何屬性進行連接。為了將這兩種模式聯系起來,我們依賴一個跨模態嵌入空間來進行多模態推理,并在沒有細粒度、屬性級分類注釋的情況下學習這個空間。通過學習如何將這兩種模態聯系起來,我們可以執行諸如文本到形狀的檢索和形狀操作等任務,還可以實現新的任務,如文本到形狀的生成。在本論文的第二部分,我們允許主體被具體化,并探索一個依賴于所有三個領域(計算機視覺、自然語言和機器人)的任務:機器人導航通過遵循自然語言指令。不再依賴于固定的圖像或3D對象數據集,代理程序現在位于一個物理環境中,并使用機載相機捕捉自己對空間的視覺觀察。為了在視覺、語言和機器人物理狀態之間建立聯系,我們提出了一個使用拓撲圖執行規劃和控制的系統。這種基本的抽象允許主體將語言指令的部分與環境的相關空間區域聯系起來,并將一系列視覺觀察與物理動作和行動聯系起來。
今天的計算機視覺擅長于識別現實世界的限定部分:我們的模型似乎能在基準數據集中準確地檢測出像貓、汽車或椅子這樣的物體。然而,部署模型要求它們在開放世界中工作,開放世界包括各種設置中的任意對象。目前的方法在兩個方面都有困難:他們只認識到少數的類別,并且在不同的訓練分布的環境中切換。解決這些挑戰的模型可以作為下游應用的基本構建模塊,包括識別操作、操作對象和繞過障礙進行導航。本論文提出了我們在建立魯棒檢測和跟蹤目標模型的工作,特別是有很少或甚至沒有訓練的樣例。首先,我們將探索傳統模型如何泛化到現實世界,傳統模型只識別一小部分對象類。我們表明,目前的方法是極其敏感的:即使是輸入圖像或測試分布的細微變化,都可能導致精度下降。我們的系統評估顯示,模型——即使是那些訓練很好的對對抗或合成損壞具有魯棒性的模型——經常正確地分類視頻的一幀,但在相鄰的感知相似的幀上卻失敗了。類似的現象甚至適用于由數據集之間的自然變化引起的微小分布變化。最后,我們提出了一種解決對象外觀泛化的極端形式的方法:檢測完全遮擋的對象。接下來,我們探索歸納到大的或無限的詞匯,其中包含罕見的和從未見過的類。由于當前的數據集很大程度上局限于一個小的、封閉的對象集合,我們首先提出了一個大型詞匯基準來衡量檢測和跟蹤的進展。我們展示了當前的評估不足以滿足大型詞匯量基準測試,并提供了適當評估此設置中的進度的替代指標。最后,我們提出了利用封閉世界識別的進展來為任何對象建立精確、通用的檢測器和跟蹤器的方法。
//www.ri.cmu.edu/publications/open-world-object-detection-and-tracking/
賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。
在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。
總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。
//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28
使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。