人工智能領域的最新進展帶動了能夠根據文本描述生成高度詳細和準確圖像的技術的發展。這種技術以神經網絡模型為基礎,使用一種變體架構,旨在理解自然語言輸入并生成相應的視覺輸出。這些功能允許創建從簡單插圖到復雜逼真圖像的一切,為包括軍事在內的各個領域帶來了無數可能性。
幾十年來,人工智能一直是軍事戰略和技術不可或缺的一部分。它從最基本的計算算法開始,逐漸發展成為復雜的機器學習模型,可以模擬、預測復雜場景并做出反應。人工智能在軍事領域的早期應用包括目標識別系統和模擬訓練程序。隨著時間的推移,這些系統變得越來越先進,結合了神經網絡和深度學習技術,以加強決策過程、改善監視以及優化后勤和戰場管理。
將先進的人工智能圖像生成技術融入軍事行動,是因為該技術能夠顯著增強視覺交流和態勢感知能力。傳統的偵察和監視方法可輔以人工智能生成的圖像,根據現有數據對敵方位置或潛在的未來場景進行可視化預測。這種能力改變了計劃和執行任務的方式,提供了一種動態工具,可以實時生成詳細的視覺輔助材料,幫助戰略規劃和決策。
此外,人工智能生成逼真訓練場景的能力尤為寶貴。軍事訓練可能是資源密集型的,需要大量的人力、設備和時間。人工智能圖像生成技術可以為模擬訓練創造多樣而復雜的視覺環境和場景,從而減少對實體舞臺的需求,實現更靈活、更具成本效益和更全面的訓練方法。這些場景可根據特定任務需求或環境量身定制,增強了訓練的真實感,使士兵為在戰場上可能遇到的各種情況做好準備。
此外,在心理戰中,人工智能生成有說服力和戰略性圖像的能力可用于影響敵方戰斗人員和平民。該技術可以制作視覺內容,旨在誤導、迷惑或打擊對手的士氣,或以符合軍事戰略目標的方式支持宣傳工作。
總之,將先進的人工智能圖像生成技術引入軍事應用,不僅有望提高作戰效率,還能在戰略制定、訓練和執行方面引入新的方法。然而,與任何技術一樣,人工智能技術也有其自身的一系列挑戰和倫理考慮,必須加以謹慎管理,以確保其服務于安全和維和努力的最佳利益。這些方面凸顯了建立健全的協議和道德準則的重要性,以管理人工智能在軍事環境中的使用,確保其效益最大化,同時最大限度地減少潛在風險和濫用。
將人工智能圖像生成技術融入軍事訓練和模擬中,標志著在讓士兵為實戰場景做好準備方面的一次變革。傳統方法通常依賴于靜態環境或腳本事件,可能無法捕捉實戰的不可預測性和復雜性。這項技術能夠根據文字描述生成圖像,因此可以創建動態的、高度多變的、接近真實世界條件的場景。
例如,培訓人員可以輸入對特定地理特征、天氣條件和敵人配置的描述。然后,該技術就能生成包含這些元素的可視化場景,為受訓者提供身臨其境的視覺體驗,增強他們的空間意識和戰術技能。這種方法可以根據敵方戰術的新情報或作戰環境的變化快速調整培訓模塊,使準備工作既與時俱進又切合實際。
考慮這樣一個場景:軍事戰略家需要讓部隊為在平民混雜的城市環境中開展行動做好準備,而這種環境會帶來復雜的交戰規則。通過使用人工智能圖像生成技術,培訓人員可以創建多個城市場景,其中包括不同密度的平民、不同的建筑結構和潛在的敵人藏身之處。然后,受訓人員可以練習識別非戰斗人員,并在瞬間做出符合交戰規則的決定,從而減少附帶損害,提高任務成功率。
另一個假設場景可能涉及兩棲作戰,其中地形和天氣起著至關重要的作用。培訓人員可以利用該技術生成不同天氣條件下的不同海灘景觀圖像,如霧、雨或強光,每種天氣條件對能見度的影響都不同。這些圖像可以集成到虛擬現實設備中,提供一個全感官的訓練環境,讓部隊在具有挑戰性的條件下練習登陸和初始海灘攻擊。
在軍事模擬中使用人工智能圖像生成技術有很多好處。它減輕了后勤負擔,降低了與建立實體訓練環境相關的成本。它還能快速重新配置場景,實現重復練習,而不會有可預測性風險或需要大量重置。此外,人工智能生成的場景可以包含物理模擬難以達到的細節和可變性,例如建筑物或地貌在長期作戰過程中的磨損和破壞效果。
不過,也存在潛在的局限性和挑戰。生成圖像的準確性在很大程度上取決于輸入描述的質量和具體性。所生成的數字圖像與真實世界的視覺效果之間也可能存在差距,這可能會影響受訓人員將在模擬環境中學到的技能應用到實際戰斗中的能力。要解決這些問題,需要不斷改進所使用的人工智能模型,并通過實戰演習和經驗豐富的軍事人員的反饋來持續驗證培訓效果。
此外,對人工智能圖像生成等尖端技術的依賴需要強大的 IT 基礎設施和網絡安全措施來防止中斷,并確保訓練環境不會受到外部威脅的破壞或干擾。軍方還必須考慮對教官和 IT 人員進行有效利用和維護這些先進系統所需的培訓,確保這些系統成為資產而不是負擔。
雖然人工智能圖像生成技術為軍事訓練和模擬提供了巨大優勢,但在將其融入現有軍事訓練計劃時,必須仔細規劃并考慮技術和操作因素。確保這些工具增強而不是復雜化訓練過程,將是成功采用和利用這些工具幫助部隊做好準備應對復雜的現代戰爭的關鍵。
軍事行動的戰略規劃錯綜復雜,需要有關作戰環境的精確而全面的信息。人工智能生成的圖像可根據一系列數據輸入(包括情報報告中的文字描述)提供可視化效果,從而加強這一過程。這些可視化圖像可以描繪假想敵的位置、潛在的后勤路線或重要基礎設施的布局,使軍事規劃人員能夠直觀地看到各種場景,并做出明智的戰略和戰術決策。
假設偵察數據顯示在偏遠的森林地區存在敵軍。由于地形原因,有關敵軍人數、裝備和防御工事的詳細信息可能不完整或模糊不清。有了人工智能圖像生成功能,指揮官可以輸入現有數據,并獲得各種潛在敵軍設置的詳細可視化預測。這些視覺效果有助于評估不同攻擊路線或防御陣地的可行性,從而通過模擬預測各種敵方配置來加強計劃階段的工作。
在海軍行動中,了解沿海地區的地理布局至關重要。人工智能可以生成詳細的海岸線圖像,根據衛星圖像和其他偵察數據顯示潛在的海軍工事和碼頭設施。這種能力有助于規劃兩棲攻擊,并有助于在封鎖或防御行動中對海軍資產進行戰略部署。
將人工智能生成的圖像整合到任務規劃中,可以大大縮短制定作戰計劃所需的時間。傳統上,創建詳細的戰場環境可視化圖像可能需要數天或數周的時間,涉及多個部門和大量資源。有了人工智能,這一過程就會加快,為規劃人員提供即時的可視化洞察,并可在獲得新信息時輕松調整。
快速生成和迭代可視化情景的能力使規劃流程更加動態。規劃人員可以探索多種應急計劃,快速將各種決策的結果可視化。這種迭代過程可支持對不斷變化的實地情況做出更敏捷的反應,這在情況可能迅速變化的現代軍事行動中至關重要。
然而,依賴人工智能來執行此類關鍵任務也會帶來重大責任和風險。為了確保準確性,有必要根據真實世界的數據不斷驗證人工智能生成的圖像。圖像生成中的誤讀或錯誤可能導致錯誤的戰略決策,造成嚴重后果。因此,這些工具應被視為傳統作戰計劃和情報分析方法的輔助工具,而不是其替代品。
在安全的軍事環境中部署人工智能需要解決幾個技術難題,如確保人工智能所使用數據的完整性和安全性。軍事行動往往涉及敏感信息,必須防止網絡威脅。要確保人工智能系統的安全,就必須采取強有力的網絡安全措施。
另一個挑戰是人工智能工具與現有軍事技術的整合。這就需要標準化的協議和接口,以便人工智能生成的可視化圖像能在各種平臺上無縫使用,并能被不同專業技術水平的人員使用。
為了應對這些挑戰,軍事組織可以部署專為人工智能操作設計的加密網絡和安全數據庫,確保敏感數據始終受到保護。此外,針對軍事人員的持續培訓計劃可以提高他們有效利用這些先進工具的能力,從而降低出錯風險,提高人工智能生成的可視化的作戰效益。
人工智能技術為軍事環境中的任務規劃和可視化提供了巨大優勢,但其成功與否取決于謹慎的集成、對輸出的全面驗證以及對相關安全風險的持續管理。通過增強可視化能力,人工智能可以極大地促進軍事行動的精確性和有效性,但前提是在實施過程中必須有必要的保障和監督。
人工智能技術在心理作戰(PsyOps)中具有巨大潛力,而心理作戰是現代軍事戰略的重要組成部分,旨在影響對手的心理狀態。通過生成令人信服的戰略性視覺效果,人工智能可以幫助制作影響敵軍和平民士氣、決策和行為的信息或宣傳。例如,人工智能可以生成描述旨在打擊敵軍士氣的場景的圖像,如壓倒性敵軍的可視化圖像或敵軍內部不穩定的虛構圖像。同樣,對于平民受眾,人工智能可以生成視覺圖像,提升對維和部隊的正面看法,或突出敵對行動的負面影響,從而為沖突地區的戰略敘事做出貢獻。
在心理戰中使用人工智能會引發重大的倫理問題,特別是關于視覺內容的真實性和操縱問題。雖然這些行動在戰略上有利于軍事目標,但也會帶來錯誤信息的風險,從而在國內和國際上造成意想不到的后果。因此,在心理戰中部署人工智能必須遵守嚴格的道德標準,以確保在國際法和國際規范的范圍內負責任地使用這種能力。
當務之急是制定明確的指導方針,規定心理戰中人工智能生成內容的適當環境和限制。這些準則應確保必要時的透明度,并防止散布徹頭徹尾的虛假信息,從而維護軍事行動的可信度并尊重道德考量。
人工智能生成的圖像在心理戰中被濫用的可能性是一個關鍵問題。一旦暴露,錯誤的表述可能導致沖突升級、誤解或反彈。為降低這些風險,軍事實體必須實施強有力的控制措施,包括監督視覺內容創建和傳播的監督機制。這可確保在開展行動時實行問責制,并遵守旨在防止濫用的道德準則。
操作安全措施應包括由人工分析師對人工智能輸出進行驗證,以確保生成的圖像不包含誤導或有害內容。此外,還應制定協議來跟蹤這些視覺效果的使用情況和效果,以便根據反饋和當地不斷變化的局勢進行調整。
此外,還需要對軍事人員進行心理復原力培訓,使他們了解并以道德的方式處理所部署的視覺效果帶來的心理影響。這種培訓將有助于制定既有效又考慮到所有相關方心理健康的策略。
人工智能技術提供了可增強心理作戰能力的重要功能,因此有必要認真考慮其倫理影響和潛在風險。有效的管理框架,加上嚴格的監督和道德培訓,對于在心理作戰中利用人工智能生成的圖像的力量至關重要。這些措施不僅能防止濫用,還能確保心理作戰在堅持最高行為標準的同時為實現任務目標做出積極貢獻。
在軍事行動領域,監視對于收集情報和維護安全至關重要。人工智能的圖像生成功能可以填補視覺空白或從部分信息中推斷潛在場景,從而大大增強對監控數據的解讀。這種整合可將原始數據轉化為可操作的情報,為軍事分析人員提供詳細的可視化表述,幫助他們做出明智的決策。
例如,如果監視無人機因天氣條件或技術限制而捕捉到不清晰或不完整的圖像,可利用人工智能生成更清晰的增強版圖像。通過向系統輸入描述或部分視覺效果,分析人員可以獲得更清晰的圖像,突出重要特征或活動,從而可能揭示隱藏的設備、偽裝的敵方陣地或不尋常的移動。
該技術的一個重要應用是預測敵人的動向。通過分析長期收集的模式和部分數據,人工智能可以生成敵軍前進或撤退的預測可視化圖像。這些預測可以幫助戰略家更有效地規劃防御演習或準備交戰。
在敵方使用偽裝技術隱藏設施或設備的環境中,人工智能可以根據環境背景和已知偽裝模式生成圖像,假設潛在物體的外觀,從而提供幫助。這種能力不僅有助于識別威脅,還能加強監視飛行和地面巡邏的規劃。
部署人工智能以加強監視解釋需要克服幾個技術挑戰。首先,人工智能生成圖像的準確性至關重要。不正確的判讀會導致錯誤的決策,并可能造成嚴重后果。為確保可靠性,有必要利用最新的多樣化數據集對人工智能模型進行持續訓練。這種訓練可使人工智能隨著時間的推移提高其預測能力和準確性。
此外,將人工智能工具與現有軍事監控系統集成需要仔細考慮兼容性和互操作性。系統的設計必須能將數據無縫地輸入人工智能模型,并以對分析人員和決策者有用和可訪問的格式顯示其輸出結果。這種集成往往需要對現有基礎設施進行重大技術調整和升級。
在敏感的軍事環境中部署人工智能技術時,安全是另一個最重要的問題。保護輸入人工智能系統的數據以及生成的圖像免遭未經授權的訪問或篡改至關重要。必須采用強大的加密方法、安全的數據傳輸協議和嚴格的訪問控制來保護這些信息。
此外,還應定期進行安全審計和合規檢查,以確保所有系統都遵守數據安全和操作完整性的最高標準。這些措施可防止敏感信息的潛在泄漏,并防范可能危及監控操作的網絡威脅。
雖然將人工智能融入軍事監控在增強數據解讀和行動規劃方面具有顯著優勢,但也需要對技術和安全挑戰給予細致的關注。通過有效應對這些挑戰,軍事組織可以利用人工智能生成的圖像獲得戰略優勢,增強其在監控、威脅檢測和戰術規劃方面的能力。
將人工智能技術融入軍事應用需要采取嚴格的安全措施,以保護敏感數據并保持操作的完整性。鑒于人工智能具有生成詳細和戰略性視覺內容的能力,確保這些系統的安全至關重要。軍事環境需要最高標準的數據保護,因此必須制定包括物理、網絡和程序安全措施在內的強大協議。
必須在存放人工智能系統的硬件和數據存儲設施周圍嚴格執行物理安全措施。這包括受控訪問環境、持續監控和安全設施,以防止未經授權的物理訪問。網絡安全同樣重要,包括使用加密、安全通信協議和入侵檢測系統保障系統間的數據傳輸,以防范網絡威脅。
程序安全至關重要,它涉及對訪問人工智能系統的人員實施嚴格的操作規程和許可級別。這種方法可確保只有獲得授權的人員才能與人工智能的操作參數或輸出進行交互或修改,從而降低可能危及安全的內部威脅或人為錯誤的風險。
在軍事環境中部署人工智能技術會引發重大的倫理問題,必須謹慎處理,以維護公眾信任并遵守國際法律和規范。倫理方面的考慮包括生成圖像的準確性和操控性、在心理戰中濫用的可能性以及對國際穩定與安全的廣泛影響。
制定規范軍事領域人工智能應用開發和部署的道德準則至關重要。這些準則應確保必要時的透明度,促進問責制,并防止制造或傳播誤導性信息。此外,這些指導方針還應涉及人工智能決策過程的影響,確保軍事行動中的最終決策仍由人類控制,以避免在戰斗場景中出現與機器決策有關的道德困境。
展望未來,軍方必須考慮整合先進人工智能技術的長期影響。這包括持續評估該技術對軍事戰略、行動和倫理方面的影響。為應對新出現的威脅和作戰需求,必須不斷改進人工智能系統,以保持技術優勢和作戰效能。
制定全面的管理框架對監督這些技術的部署和使用至關重要。這些框架應包括定期審查和調整安全措施和道德準則的機制,確保它們隨著技術的發展而保持相關性。與國際機構和其他國家的合作有助于制定在軍事領域使用人工智能的全球標準和規范,在促進和平與穩定的同時防止沖突升級。
人工智能技術為加強軍事行動提供了革命性的能力,但將其融入軍事環境必須謹慎管理。安全協議、道德考量和嚴格的管理框架對于確保安全、負責和有效地使用這些技術至關重要。通過解決這些方面的問題,軍事組織可以利用人工智能的全部潛力來支持其任務,同時堅持安全和道德行為的最高標準。
在探索 DALL-E 人工智能技術在軍事領域的應用過程中,我們發現技術能力與戰略優勢之間的界限越來越模糊,揭示了軍事行動的新領域。將人工智能生成的圖像用于訓練、任務規劃、心理作戰、強化監視,以及管理這些應用的嚴格的安全和道德協議,凸顯了軍事方法的關鍵轉變。
首先,詳細介紹了 DALL-E 如何增強訓練環境,從而實現成本效益高、適應性強和高度特定的場景,使軍事人員更好地為現代戰爭的復雜性做好準備。在任務規劃中,可視化和快速準確地模擬各種作戰結果的能力提供了前所未有的優勢,使戰略決策更加明智,反應更加迅速。
心理作戰也有可能因人工智能而發生轉變,影響敵方戰斗人員和平民看法的能力既是一種強大的工具,也是一種道德挑戰。在監視方面,DALL-E對數據進行內插和外推的能力為更好地了解和預測對手的動向和意圖提供了機會,從而將原始數據轉化為戰略資產。
然而,這些應用中的每一項都伴隨著重大責任--維護人工智能系統的安全、確保生成圖像的準確性和道德使用,以及管理人工智能在戰爭中的廣泛影響。這些考慮因素需要持續的警惕、適應和管理,以確保人工智能技術的優勢不會變成負擔。
未來,人工智能在軍事應用中的作用必將擴大。機器學習和神經網絡方面的創新將增強 DALL-E 等系統的能力,使其更準確、更快速,并能處理更復雜的場景。這些進步可能會帶來更多的自主系統,它們可以與人類指揮官協調操作,在實戰中提供實時數據和可視化信息。
然而,隨著人工智能系統越來越多地嵌入軍事行動,管理這些技術的強大框架變得更加重要。這不僅包括安全和操作協議,還包括關于在戰爭中使用人工智能的國際協議,這有助于降低升級風險,確保全球穩定。
當我們在軍事環境中利用像 DALL-E 這樣的人工智能的強大能力時,技術創新與道德責任之間的平衡仍然至關重要。確保人工智能有助于保護、支持和推進戰略目標,同時又不損害道德標準或國際和平,這將是我們在這個數字時代前進過程中面臨的最大挑戰之一,也是必要條件。未來的軍事行動在很大程度上受到人工智能的影響,必須以對透明度、道德和全球合作的承諾為導航,確保技術在維護國家和國際安全方面發揮有益的作用。
參考來源:Kinomoto.Mag AI
隨著各國和國防組織適應快速變化的安全和戰爭環境,生成式人工智能正在成為一種重塑戰略、能力和行動的變革性技術。
生成式人工智能正在重塑國防情報界和軍事部門的工作方式,以及他們提供戰場態勢感知和決策的方式。由于人工智能算法能快速關聯來自不同傳感器系統的數據,如地面傳感器、衛星、無人機和其他可用的戰場信息源,因此能實時描繪作戰環境,從而增強在壓力最大、時間最緊迫的條件下作戰的指揮官的決策能力。從這個意義上說,生成式人工智能在作戰情報中的應用與美國國防部 2017 年宣布的 “Project Maven ”計劃有異曲同工之妙。
生成式人工智能改變了國防軍事訓練和模擬。利用人工智能算法,軍事人員現在可以接觸到高度逼真的動態訓練模擬環境,幾乎可以適應無限多的作戰場景--所有這一切都具有成本效益且無風險。北約正在將人工智能融入其訓練計劃,讓這些模擬環境適應受訓人員的行動和反應。這表明人工智能有能力設計獨特的學習體驗,適應受訓者的需求,并優化他們的認知準備狀態。
將生成式人工智能融入國防領域,對無人監視、偵察和作戰行動自主系統的研究和開發起到了重要作用。人工智能允許無人機和無人駕駛車輛在沒有人類直接控制的情況下執行任務,從而提高了速度、耐力和風險。以色列國防軍最近開始使用人工智能驅動的自主無人機在邊境合規場景中執行軍事監視和偵察任務,這證明了這些技術的作戰優勢和戰略價值。
生成式人工智能在網絡安全領域也大有可為。它可以幫助識別、預防和應對網絡威脅--使用人工智能算法來識別可能預示著網絡攻擊的新穎和前所未見的模式。美國網絡司令部利用人工智能增強其網絡防御能力,其結果是為關鍵信息基礎設施提供更加積極主動的安全態勢,并改善運行的連續性。
印度在國防領域的生成式人工智能整合方面處于領先地位。印度政府已經認識到人工智能在戰區內外形成下一代能力支柱的潛力,如今已在國防部門啟動了多項宏偉的人工智能設計。根據一項名為 “AI for ALL ”的倡議,印度政府正在將人工智能融入其 “Mae in India ”和 “數字印度 ”的敘事中。在國防研究與發展實驗室(DRDO)內部,量子計算和人工智能正被用于生成用于指導無人駕駛航空器和水下航行器、網絡防御以及軍事平臺預測性維護的系統。
計算是實現生成式人工智能的挑戰之一。GMLV 技術表明,先進的人工智能需要強大的計算能力,而這一直是部署下一代神經網絡所面臨的問題。因此,美國可能有更多機會在美國出口商、銀行業、保險業和醫療保健業的新興市場中發揮重要作用,并利用國家安全局開發的加密系統--這是對信息時代研發工程設計的重要性的另一種諷刺--所有這一切都源于印度對創生式人工智能的戰略擁抱,以及其預期的近乎無限的創造和組合,而這些都是事先無法預測的。
隨著生成式人工智能在國防工業中的應用持續升溫,我們肯定會看到在預測性維護、物流優化、下一代武器系統開發和其他領域出現更多技術。但是,正如所指出的,人工智能技術的快速發展也帶來了一些實質性的挑戰,尤其是在安全和道德領域。這些挑戰包括:自主武器擴散風險的蔓延;戰場上的潛在競爭;人工智能驅動的沖突升級動態;以及無數其他挑戰。要應對這些挑戰,就必須開展大量國際合作,并作出全球承諾,制定人工智能倫理準則和監管框架。
生成式人工智能即將徹底改變國防工業,開啟全新的能力和效率世界。但是,我們利用這一強大技術的能力將承擔沉重的責任,并將成為全球安全計算中的一個重要考慮因素。
參考來源://www.linkedin.com/pulse/generative-ai-shaping-present-future-defense-lbcrf
當今的威脅形勢瞬息萬變,能否在充分了解情況的基礎上做出以數據為導向的決策,關系到任務的成敗。然而,傳統的分析方法往往無法應對現代國防和情報行動所面臨的大量復雜數據。
這正是知識圖譜驅動的先進人工智能(AI)提供變革性解決方案的地方。通過利用大型語言模型和知識圖譜的協同作用,軍事領導人和分析人員可以獲得基于背景的洞察力,從而領先于新出現的威脅,并自信地做出關鍵決策。
國防領域的有效決策需要對行動背景有細致入微的了解,即形成現實世界場景的實體、關系和特定領域知識的錯綜復雜的網絡。在人命關天、容錯率極低的情況下,這種背景意識至關重要。
獨立的人工智能模型雖然功能強大,但缺乏可靠支持關鍵任務應用所需的上下文基礎。這些模型通常是在廣泛的互聯網數據基礎上訓練出來的,容易產生幻覺、與事實不符,而且對國防部隊面臨的復雜作戰現實缺乏敏感性。
知識圖譜為人工智能提供了一個專為國防領域量身定制的豐富、結構化的知識庫,從而彌補了這一關鍵差距。這些圖對現實世界的概念、實體(人員、組織、地點等)及其相互關聯的關系進行建模,捕捉可靠的決策支持所需的深層背景。
通過將大型語言模型(LLM)與知識圖譜相結合,我們可以釋放出強大的協同效應,將 LLM 的生成能力與圖譜中編碼的結構化上下文知識相結合。這種混合方法通常被稱為 "情景(上下文)人工智能",它允許 LLM 生成不僅流暢連貫,而且基于相關的、經過驗證的事實和特定領域知識的響應。
例如,負責分析潛在威脅場景的情境人工智能系統可以利用知識圖譜來了解相關行為體、其動機、歷史模式和地緣政治背景。有了這些豐富的背景知識,LLM 就能生成細致入微的評估、可行的建議和應急計劃,以應對錯綜復雜的局勢。
情境人工智能在國防和情報領域的應用意義深遠:
雖然情景人工智能潛力巨大,但將其部署到關鍵任務防御應用中需要一個強大的信任和問責框架。知識圖譜通過編碼事實性的、可驗證的知識并實現透明的推理過程,為此奠定了重要的基礎。
此外,人工智能的道德原則,如公平性、可解釋性和人類監督,必須嵌入到這些系統的開發和部署中。這將確保情境人工智能能夠增強人類決策者的能力,同時遵守最高的問責和負責任使用標準。
隨著威脅的演變和現代戰爭復雜性的加劇,知識圖譜和情景人工智能的整合成為國防部門和特種作戰部隊的戰略要務。通過利用這一變革性技術的力量,可以獲得決定性的優勢,在日益動蕩的世界中保持任務準備狀態并保障國家安全。
注:任務準備(戰備):指軍隊、組織或個人為完成任務所做的準備工作,包括物資、裝備、人員、訓練等方面的準備。
生成式人工智能的應用領域遠遠超出了數字助理和在線工具的范疇;其現在正涉足一個風險極大的領域:軍事行動。在國防戰略領域的這一飛躍代表著人工智能應用的重大發展,既是對戰略家和技術專家的挑戰,也令他們興奮不已。
來自特殊競爭研究項目(SCSP)的專家強調了正在進行的實驗,即根據特定的軍事條令和情報對生成式人工智能進行訓練,以制定作戰規劃。這一發展并不是要取代人類戰略家,而是要增強他們的能力。生成式人工智能在簡化復雜軍事行動的起草方面潛力巨大,不過實際執行仍嚴格受人類控制,并遵守防止自動致命行動的嚴格標準。
這個想法很吸引人:現在,生成式人工智能可以管理各種任務,從平凡的任務,如規劃一周的雜貨清單,到復雜的任務,如總結絕密情報或制定詳細的軍事戰略。不過,這項技術仍然需要一個 "認知副駕駛員"--由人類來監督和驗證人工智能的計劃。
以下是生成式人工智能在全球軍事行動中的三種應用方式。
1.自動威脅模擬:生成式人工智能用于網絡防御,根據以往事件中的模式自動生成網絡攻擊模擬。這有助于軍事網絡防御團隊制定強有力的應對措施,并針對潛在的網絡威脅進行更有效的訓練。
2.場景規劃和策略制定:在戰略行動中,生成式人工智能可以創建詳細的兵棋場景和策略,為特定的軍事形勢提供多種可能的應對措施。這有助于培訓和行動規劃,為軍事戰略家提供基于不同方法的各種潛在結果。
3.信息和心理作戰:生成式人工智能可用于制作量身定制的信息內容和心理作戰活動,以高度適應特定目標受眾的文化和社會背景。這種應用包括生成有說服力的通信,以戰略性的方式影響人們的觀念和行為。
從簡單的人工智能任務到更復雜的操作,這表明在未來,生成式人工智能有可能協調軍事和民用生活中更廣泛的方面。這包括從后勤支持到戰略規劃的方方面面,所有這些都將在人類的監督下進行,以避免出現令人擔憂的 "天網 "情況。
對于編劇來說,這項技術的發展提供了豐富的素材。人類角色將如何與能力越來越強的生成式人工智能互動?這種互動會產生什么樣的沖突和解決方案?敘事的可能性既廣泛又深刻,反映了現實世界與技術關系的復雜性。
隨著新一代人工智能不斷滲透到生活的方方面面,它對地緣政治穩定的影響是深遠的,這與第一次世界大戰前的時代有著令人不安的相似之處。然而,在人類和人工智能顧問的精心指導下,我們有希望比過去更有效地駕馭這個動蕩的時代。
這些發展不僅是技術上的,也是鼓舞人心的。在人工智能重塑戰場的同時,它也重塑了敘事景觀,為每個人角色和故事提供了新的挑戰和機遇。無論是在探索戰爭的未來、人工智能的倫理,還是人工智能驅動的企業世界中的微妙動態,不斷演變的人工智能角色都是一個等待探索的敘事金礦。
隨著人工智能的不斷發展,敘事也應與時俱進,以挑戰角色和吸引讀者的方式融入這些技術進步。這不僅是一次反思未來的機會,也是一次通過講述故事塑造未來的機會。
參考來源:AI4ES
隨著當前人工智能和機器學習程序的快速發展,大多數國家都在優先發展新的和改進的自主系統,目的是以更快的反應速度、更低的成本和更少的人力來執行多項任務。現代戰爭正變得越來越自主,包括作戰在內的多項功能正被委托給日益復雜的程序和系統。本文旨在分析使用人工智能的武器系統在軍事上的應用,特別是巡飛彈藥。文章將分析這些系統當前的能力、在納戈爾諾-卡拉巴赫沖突(2020 年)和最近的烏克蘭-俄羅斯戰爭(2022 年)中的應用,同時還將考慮當前和未來系統將面臨的法律和倫理挑戰。文章將從安全角度分析不同自主系統的當前應用和未來趨勢,并從法律和倫理角度分析主要挑戰。
縱觀歷史,戰爭一直主要是人與人之間的摩擦行為,"是人與人之間的肉體較量,每個人都使用武力迫使我們的敵人按照我們的意愿行事"。在這一論點中,技術在戰爭中一直扮演著關鍵角色,往往通過其成功的條令運用來重塑作戰方式。事實上,諸如火器和火車的發明、機械化車輛和后來的裝甲車輛以及作戰飛機的發展,以及核武器的誕生等技術突破,不僅改變了戰爭戰術的動態,而且改變了應如何發動戰爭的戰略。在過去幾十年里,人工智能(AI)領域的技術成就使更新的系統越來越多地融入我們日常生活的許多方面,目前在信息和通信技術(導航、社交媒體算法等)、工業(流程自動化和優化)、市場營銷和銷售甚至醫療保健領域都有應用。人工智能系統也在軍事工業綜合體中大顯身手,既是提供支持功能的平臺,如情報、監視、導航和增強的指揮與控制(C2)能力,也是協助完成識別和選擇目標以及實施打擊等不同復雜任務的平臺。本文將分析人工智能的后一種功能、其目前的應用以及此類能力對國際人道主義法的挑戰。不過,在探討其軍事能力之前,有必要澄清什么是人工智能、自主系統與遙控平臺的區別,以及人與機器如何相互作用。
人工智能有許多不同的定義。最簡單地說,人工智能可以定義為一種系統、程序或機器,能夠以類似人類的智能快速執行不同的復雜任務。由于人工智能技術在各個領域的廣泛應用和可能的應用(及影響),大多數國家的軍隊都實施了自己的人工智能戰略,以利用該技術的固有優勢,如增加反應時間、降低成本和更好地防御網絡威脅。在與武器系統集成方面,應區分兩個不同的類別:a) "自動";b) "自主"。紅十字國際委員會(紅十字委員會)是這一領域的主要機構之一,該委員會認為,這兩類系統在自主程度、功能(即可執行的任務及其復雜性)以及最重要的人類控制或監督程度方面存在很大差異。自動系統可定義為 "非遠程控制,但一旦部署就能以自足和獨立的方式運作 "的武器。自動崗哨槍、傳感器融合彈藥和某些反車輛地雷就屬于此類武器。根據這一定義,一些軍事機構認為,無人機等無人駕駛航空系統(UAS)既不應被視為完全 "自動化",因為它們可以遙控駕駛;也不應被視為完全遙控,因為導航、起飛和著陸等功能可以 "自動化"。英國國防部試圖為自動化系統提供一個包羅萬象的定義,即那些 "根據一個或多個傳感器的輸入,在邏輯上按照預先確定的規則進行編程,以提供可預測結果的系統"。
另一方面,還有 "自主 "武器系統,未來可能會由更先進形式的人工智能集成。雖然沒有一個統一的定義,但許多軍事手冊和國際機構似乎都同意一些核心特征。例如,紅十字國際委員會(ICRC)將自主武器系統定義為 "無需人工干預即可選擇目標并對其施以武力的武器;美國國防部(US DoD)將其定義為 "一旦啟動,無需人類操作員進一步干預即可選擇并攻擊目標的武器系統",而英國國防部(UK MoD)則給出了如下定義:"能夠理解更高層次意圖和方向的系統;根據這種理解和對環境的感知,這種系統能夠采取適當行動,實現理想狀態;它能夠從眾多備選方案中決定行動方案"。因此,從這些定義中可以看出,自主武器系統的共同特征是:a) 此類系統能夠執行多項功能;b) 無需人類監督和/或批準即可運行;c) (至少在未來)還能根據周圍環境的變化進行動態調整。
一些軍事部門還根據復雜程度對自主武器系統進行了進一步分類。例如,美國國防部根據自動化和控制程度,將自主武器系統分為三大類:1)"自主武器系統"(如上定義);2)"人類監督自主武器系統":旨在為人類操作員提供干預和終止交戰的能力;3)"半自主武器系統":一旦啟動,僅用于攻擊人類操作員選定的單個目標或特定目標群(美國國防部,2023 年)。最后,自主武器系統還可根據其人機一體化、控制和監督的程度細分為三個不同類別:1)"人在回路武器":僅能在人類指令下選擇目標和投放力量的系統;2)"人在回路武器": 2)"人在環上武器":可在人類操作員的監督下選擇目標和投放武力,人類操作員可控制其行動;以及 3)"人在環外武器":能夠在沒有任何人類輸入或互動的情況下選擇目標和投放武力的系統。
目前已投入實戰的具有半自主能力、屬于 "人在回路中 "類別的武器系統包括 "法蘭克斯 "1-B 近防武器系統(CIWS),這是一種艦載 20 毫米火炮系統,可自主探測、跟蹤和攻擊目標(雷神公司,2023 年);反火箭和防空平臺,如以色列的 "鐵穹 "和德國的 "歐瑞康天盾",均可自主探測、跟蹤、選擇和交戰。目前具有一定程度自主功能的另一類武器系統是巡飛彈藥,其能力和使用情況將在接下來的章節中分析。
過去十年中,巡飛彈藥的擴散和復雜性迅速增加。如今,20 多個國家正在生產和使用此類系統,預計未來幾年這一趨勢還將加劇。與無人機不同,巡飛彈藥是一種無人駕駛飛行器,旨在識別、跟蹤并在撞擊目標后用重量不等的爆炸彈頭在可視范圍外交戰。巡飛彈藥設計為便攜式、易于發射和一次性使用,使其成為火炮和復雜導彈系統的一種成本效益高、更安全、更靈活的替代品。事實上,得益于這些特點,它們能夠(根據制造商的說法)執行多種類型的任務(情報、監視、偵察、精確打擊、反炮擊等),同時在一定區域上空長時間巡飛,從而有更多的決策選擇。雖然目前使用的巡飛彈藥的大部分任務都是自動執行的,如起飛和著陸,但更先進的系統擁有不同程度的自主能力,如導航、目標探測、跟蹤,有些甚至是交戰。事實上,以色列的 "哈比 "和 "哈羅普 "無人機、俄羅斯的 "柳葉刀-3"、土耳其的 "Kargu-2 "以及美國的 "彈簧刀"(300 和 600 系列)等巡飛彈藥都配備了全球定位系統制導、光電和紅外傳感器以及圖像處理設備,使它們(在不同程度上)能夠自主識別和跟蹤目標。最值得注意的是,"哈比 "和 "哈羅普 "巡飛彈藥被許多分析家認為是自主武器系統的典范,能夠在有限甚至沒有人工干預的情況下攻擊目標(這里指的是來自防空系統的雷達信號)。Kargu-2 是最新的系統之一。它是 STM 于 2020 年為土耳其武裝部隊開發的一款小型四旋翼飛行器,遙控或自主飛行距離為 10 千米,飛行時間為 30 分鐘,據稱配備了電子光學(EO)和紅外(IR)相機,以及使用機器學習算法進行識別的自動目標識別(ATR)系統。它還能與其他機型組成蜂群。雖然該公司稱其系統采用了 "人在環內原則",但聯合國專家小組進行的一項調查似乎表明,利比亞民族和睦政府可能已使用 Kargu-2 無人機自主 "攻擊目標,而無需操作員與彈藥之間的數據連接"。
只是在最近幾年,巡飛彈藥才被廣泛用于沖突場景。本節將分析兩個使用此類系統的案例研究及其軍事影響。
2020 年 9 月,阿塞拜疆部隊在納戈爾諾-卡拉巴赫東部地區發起進攻行動,該地區是阿塞拜疆與現已解體的亞美尼亞阿爾扎赫共和國之間的爭議地區。在這次進攻中,阿澤里部隊廣泛使用以前購買的以色列 Harop 和 Harpy-2 型彈藥,以及其他土耳其制造的無人機,有計劃地消滅目標。這些輕型 "自殺式無人機 "的射程可達 200 公里,可手動或自動操作,并配備 16 公斤重的爆炸彈頭。據 OSINT 消息來源稱,這些系統在 9 月攻勢的最初幾天發揮了巨大作用。事實上,由于這些系統具有反輻射能力,阿塞拜疆在 9 月 30 日期間和之后對亞美尼亞 T-72 坦克縱隊以及亞美尼亞地對空導彈防御系統和炮兵陣地發動了一系列精心協調的攻擊,為阿塞拜疆空軍在一些地區發動攻擊以及阿塞拜疆地面部隊奪取蘇沙等戰略要地鋪平了道路。考慮到亞美尼亞陸軍加強了大量武器庫,這些系統對亞美尼亞軍事裝備和人員造成的影響令人印象深刻。官方數字各不相同,但根據基于 OSINT 的研究,在短短大約 40 天的交火和沖突中,阿塞拜疆無人機和巡飛彈藥成功發現并摧毀了大量坦克、裝甲運兵車、火炮、雷達和防空導彈基地(9K33 Osa、遠程 S-300 和至少 1 個 Tor-M2KM)以及電子戰設備。可以說,阿塞拜疆軍事攻勢的成功在很大程度上歸功于對無人偵察機和自殺式彈藥的協調使用,這些彈藥由于體積小,成功地躲過了亞美尼亞防空系統的雷達信號。雖然亞美尼亞的防空導彈確實擊落了一些自殺式彈藥,但考慮到損失的相對數量,這些系統顯然在有效削弱亞美尼亞防御能力方面發揮了決定性作用。
烏克蘭戰爭是迄今為止最廣泛使用 "自殺式無人機 "的戰爭,尤其是俄羅斯武裝部隊。據報道,在沖突的第一年,俄羅斯空軍由于在烏克蘭防空部隊手中損失了大量飛機而在空中優勢爭奪戰中失去了優勢,此后俄羅斯開始更加重視混合使用各種類型的偵察無人機,如扎拉 421 和奧蘭、埃勒龍系列,以及像柳葉刀-3 這樣的巡飛彈藥,還有數量更多的伊朗制造的沙赫德-136。后兩者已被用于打擊特定的高價值目標,如防空系統、炮兵陣地和其他靜態目標,以及前線后方數公里處的敏感民用基礎設施(發電站、輸電線路、水庫等)。
事實證明,沙赫德-136 尤其是俄羅斯武裝部隊的寶貴資產,也是烏克蘭地對空導彈(SAM)和火炮基地的頭疼問題。該系統于 2022 年 9 月被引入俄羅斯武庫,作為一種臨時且相對廉價的解決方案,旨在填補俄羅斯無人機艦隊和巡航導彈武庫耗盡所造成的能力缺口,同時由于西方長期制裁制造這些系統所必需的高科技組件,導致當地生產能力嚴重下降。沙赫德-136 系統是一種遠程 "單向攻擊 "巡飛彈藥,裝備有用于偵察的照片和視頻設備,以及 30 至 50 公斤重的爆炸彈頭。它的射程據稱超過 2000 公里,巡飛速度高達 180 公里/小時,可巡飛數小時。這些系統中的多個系統還可以從一輛普通卡車上 "齊射 "發射。就自主功能而言,Geran-2 系統非常簡單。最值得注意的是,得益于其導航系統以及衛星和無線電信號的結合,"杰蘭-2 "可以預先編程,自主飛行并攻擊預先設定的特定地點。最新型號還配備了俄羅斯 Komet-M 數字接收器,用于改進導航、信號和抗干擾。一些分析家不排除自殺式無人機的變型也可能安裝用于打擊硬目標的紅外攝像機,使系統能在末端階段直接、更準確、自主地飛向熱源。但這一能力尚未得到證實。與納戈爾諾-卡拉巴赫沖突類似,像 "Geran-2 "這樣的巡飛彈藥從戰術和戰略層面產生的影響都相當大。從作戰角度看,伊朗彈藥提供的更遠射程,加上其低廉的成本、低雷達探測率以及從前線任何地方大量發射的固有能力,正在日益擴大烏克蘭防空系統的缺口,從而使其他高價值目標,如炮兵陣地、補給和通信網絡以及關鍵基礎設施,更容易受到縱深攻擊。雖然大部分攻擊都能被動能防御系統(如 ZSU 和導彈防空系統)有效抵御,但由于隨時發射的系統數量龐大,一些系統還是設法穿過了烏克蘭的防空系統,摧毀了 4 輛自行榴彈炮、2 輛裝甲運兵車以及若干電力基礎設施。其數量之多、用途之廣、射程之遠、續航時間之長,使其非常適合于低成本的 SEAD 行動,以及探索和發現防御漏洞,為巡航導彈攻擊鋪平道路。
國際人道主義法(IHL)是國際公法中關于限制戰爭對非戰斗人員有害影響的規則,在這一法律領域,包括巡飛彈藥在內的自主武器系統一直是學者們爭論的主題。法律學者已經確定了至少三個主要的法律挑戰,這些挑戰是由更多獨立自主系統的潛在發展和使用所帶來的。這些挑戰具體涉及 1949 年日內瓦四公約《第一附加議定書》規定的區分、相稱和預防規則,即
它們區分合法目標與民用目標和平民的能力;
附帶傷害平民和損壞民用物體的風險;
人類操作員理解該系統并驗證其操作符合國際人道主義法的能力。關于第一點,有觀點認為,要使系統能夠自行區分合法與非法目標,就必須為其配備掃描儀和傳感器,使其能夠區分民用物體和軍事目標。然而,在戰爭中,環境往往會迅速發生變化,因此,這些事先根據特定條件和特定參數設計和編程的系統將無法考慮戰場上隨時間發生的所有變化因素和變量,并相應調整其交戰參數,從而導致潛在的不可預測的結果,以及攻擊中的歧視。即使在人類仍能控制觸發器的系統中,研究也表明,在快節奏、壓力大和不確定的條件下,操作員可能只是不加批判地過度依賴系統的建議,這種情況被稱為 "自動化偏差"。第二點與戰爭中的相稱性原則有關,該原則要求軍事指揮官在攻擊前采取一切可能的預防措施,以免造成與預期軍事優勢不相稱的過度損害(《第一附加議定書》第 51.5b 條)。因此,在決定自主實施攻擊時,這些系統需要通過定性分析來判斷對合法目標實施的攻擊是否被認為是相稱的,或者是否已經采取了所有可行的預防措施,從而使程序符合這一規則。有人認為,這種背景評估始終需要人類的判斷。第三點也是最后一點涉及自主系統的可預測性。事實上,為了遵守相稱性和預防性規則,指揮官必須確信他選擇使用的武器將以某種方式發揮作用,并將產生可預測的可靠效果。如果武器在任何環境或情況下的效果都無法控制或無法完全預見,那么他就有可能違反國際人道主義規則(同上)。紅十字國際委員會對這些與注入了更先進、更獨立的人工智能的日益自主的系統相關的法律和倫理風險尤為關注。紅十字國際委員會一直主張為自主武器系統的開發和使用制定一套全面的、具有約束力的規范和規則,例如限制目標類型、地理范圍和使用環境,并規定必須有人類監督。從這個意義上說,2016 年,在《聯合國特定常規武器公約》(CCW)的工作范圍內成立了一個政府專家組,討論與致命性自主武器系統領域的技術有關的問題。2019 年,政府專家小組通過了一份指導原則清單,旨在幫助成員國在討論致命性自主武器系統的法律和倫理風險時找到共同點。雖然政府專家小組定期召開會議討論此類問題,但制定此類系統監管框架的道路似乎還很遙遠,主要原因是對致命性自主武器系統尚無一個共同認可的定義,因為它需要涵蓋更廣泛的人機交互主題。
在過去幾年中,巡飛彈藥的發展、使用和能力都有所提高。最近在納戈爾諾-卡拉巴赫和烏克蘭發生的沖突表明,它們能以相對低廉的價格有效打擊前線后方的高價值目標,通常可替代巡航/SEAD 導彈和火炮系統,在某些情況下,其射程甚至超過它們。然而,正如其他作者所言,巡飛彈藥也有可能用于其他目的,如早期預警和近距離空中支援。在過去幾年中,歐洲各國對投資采購現有或開發本地解決方案的興趣日益濃厚,而大國作為該領域的技術領導者之一,正在從烏克蘭戰爭中吸取教訓,以制定使用和防御巡飛彈藥的進攻和防御條令。就此類系統的能力而言,發展趨勢似乎是提高系統的自主性,這在很大程度上是由于人工智能在機器學習和深度學習領域的進步,以及需要規避預警設備造成的無線電信號干擾,而 AWS 對這些干擾是免疫的。事實上,一些自主系統已經在使用商業化的先進人工智能軟件和硬件,這些軟件和硬件使用不同的傳感器,能夠通過分析大量數據自動識別物體并對其進行分類。例如,烏克蘭武裝部隊最近推出了一款名為 "Saker "的人工智能無人機,它既能進行第一人稱視角(FPV)攻擊,也能在人類監督下自主識別目標并可能與之交戰,其目的是限制反應時間,并消除干擾的影響,否則操作員將無法直接控制。最后,關于與國際人道主義法相關的難題,雖然一些西方國家,最著名的是美國和英國,已經實施了開發和使用 "負責任的 "人工智能和自主系統的指導方針和法規,如全面審查和在交戰階段持續的人類監督,但其他國家可能并不傾向于這樣做。其背后的原因是,由于其生產成本低廉、用途廣泛,再加上易于與日益先進的人工智能集成,大規模生產能夠自主實施攻擊的系統(即使效率較低)將更具優勢,這一點在烏克蘭已經可以看到。
參考來源:MONDO INTERNAZIONALE
隨著近年來人工智能(AI)和機器人技術的發展,無人系統集群因其提供人類難以完成且危險的服務的潛力而受到學術界和工業界的極大關注。然而,在復雜多變的環境中學習和協調大量無人系統的動作和行動,給傳統的人工智能方法帶來了巨大的挑戰。生成式人工智能(GAI)具有復雜數據特征提取、轉換和增強的能力,為解決無人系統集群的這些難題提供了巨大的潛力。為此,本文旨在全面考察 GAI 在無人系統集群中的應用、挑戰和機遇。具體來說,我們首先概述了無人系統和無人系統集群及其使用案例和現有問題。然后,深入介紹各種 GAI 技術的背景及其在增強無人系統集群方面的能力。然后,我們全面回顧了 GAI 在無人系統集群中的應用和挑戰,并提出了各種見解和討論。最后,我們強調了無人系統集群中 GAI 的開放性問題,并討論了潛在的研究方向。
圖1:本文的總體結構。
近年來,無人系統(UVs)已成為一種顛覆性技術,為日常生活的各個領域帶來了革命性的變化,其應用范圍從包裹遞送、民用物聯網(IoT)到軍事用途[1, 2]。具體來說,無人車指的是可以在有限或無人干預的情況下運行的車輛、設備或機器,例如,車上沒有人類駕駛員或機組人員。得益于這一特殊屬性,UV 可用于在具有挑戰性或危險的環境中執行任務。一般來說,無人系統可分為無人飛行器(UAV)、無人地面車輛(UGV)、無人水面航行器(USV)和無人水下航行器(UUV)。正如其名稱所示,每種無人系統都是為特定任務和環境而設計的。例如,UAV 被廣泛用于航拍、環境和野生動物監測以及監視 [3, 4],而 UGV 則可用于運輸和炸彈探測等任務。不同的是,USV 和 UUV 分別用于水面和水下作業,包括海洋學數據收集、水下勘探和潛艇監視 [5,6]。
隨著近年來人工智能(AI)和機器人技術的發展,無人潛航器的概念已經發展到了一個全新的層次,即無人系統集群。從本質上講,無人系統集群是通過協調一組無人飛行器(如機器人、無人機和其他自主飛行器)來實現一個共同目標而設計的[7, 8]。實際上,無人集群中的每個系統都可以配備自己的傳感器、處理器和通信能力。為了讓它們高效地協同工作,人們采用了人工智能和機器人學的先進技術來協調它們的行為,并執行自主導航、自組織和故障管理等復雜任務 [7,9]。因此,與傳統的無人系統相比,無人系統集群擁有各種優勢。特別是,它們可以根據具體任務和要求動態調整車輛數量,從而提供可擴展性和操作靈活性。此外,如果無人系統群中有幾個無人系統無法運行,剩余的無人系統仍然可以協同工作,確保任務成功。這對于需要高彈性和魯棒性的任務尤其有用。最后,通過允許無人系統集群相互學習和協作,無人系統集群可以實現集群智能,即所謂的集體智能[10, 11],從而大大提高運行效率和可靠性。
雖然在無人系統集群中發揮著重要作用,但傳統的人工智能技術仍面臨諸多挑戰。特別是,這些技術需要大量標注的訓練數據,而且只能在特定環境下才能獲得良好的性能。因此,它們極易受到環境的動態性和不確定性的影響,而環境的動態性和不確定性正是無人系統集群的特點,例如無人系統之間的動態連接、風和洋流的影響以及物聯網應用中傳感器的不確定性和多樣性。此外,傳統的人工智能方法在具有大量 UV 的復雜場景以及水下、偏遠地區和受災地區等具有挑戰性的環境中可能表現不佳。為了克服傳統人工智能技術面臨的這些挑戰,生成式人工智能(GAI)在理解、捕捉和生成復雜的高維數據分布方面具有開創性的能力,因此最近在文獻中被廣泛采用。鑒于 GAI 在 UV 集群中的潛力,本文旨在從不同角度全面探討 GAI 在實現群體智能方面的挑戰、應用和機遇。
文獻中有一些調查側重于人工智能在 UV 中的應用[12, 13, 14, 15]。例如,文獻[12]的作者研究了深度學習、深度強化學習和聯邦學習等傳統人工智能技術在基于無人機的網絡中的應用,而文獻[13]的作者則對機器學習(ML)在無人機操作和通信中的應用進行了更全面的調查。不同的是,在文獻[15]中,作者綜述了物聯網網絡中人工智能無人機優化方法,重點關注人工智能在無人機通信、群體路由和聯網以及避免碰撞方面的應用。同樣,文獻[7]也討論了 AI/ML 在無人機群體智能中的應用。值得注意的是,上述調查和其他文獻主要關注無人機和傳統人工智能方法。據我們所知,目前還沒有任何文獻對無人機群的 GAI 發展進行全面的調查。本文的主要貢獻可歸納如下。
本文的整體結構如圖 1 所示。第二節介紹了 UV 集群的基本原理。第三節深入概述了不同的 GAI 技術及其優勢。然后,第四節深入探討了 GAI 在 UV 集群新問題中的應用。第五節強調了 GAI 在UV集群中的未決問題和未來研究方向。此外,表 I 列出了本文中使用的所有縮寫。
圖2:UV系統的基礎結構及其應用。
圖 5:探索創新范圍:本圖展示了 12 個突破性的模型結構,每個方面都有兩種不同的方法,以展示 GAI 在提高性能和應對UV集群挑戰方面的各種應用。每個模型都包含獨特的策略和解決方案,全面展示了該領域的技術進步。
狀態估計對 UVs 集群的應用至關重要,尤其是在自動駕駛和交通估計等領域。在導航或軌跡規劃過程中,位置、速度和方向等狀態變量對橫向決策起著至關重要的作用 [128]。然而,系統測量和機器人動態的隨機性會導致實際狀態的不確定性。因此,狀態估計的主要目標是根據現有的時間觀測結果推導出狀態變量的分布 [127]。
將 GAI 集成到 UV 的狀態估計中提供了廣泛的創新方法,每種方法都是針對特定挑戰和操作環境量身定制的。例如,在應對 UGV 交通狀態估計中數據不足的挑戰時,[121] 中的作者利用圖嵌入 GAN,通過捕捉道路網絡中的空間互連,為代表性不足的路段生成真實的交通數據。在這一提議的框架中,生成器使用類似路段的嵌入向量來模擬真實交通數據。同時,判別器會區分合成數據和實際數據,并對生成器進行迭代訓練,以優化這兩個部分,直到生成的數據在統計上與真實數據無異。與 Deeptrend2.0 等傳統模型[129]相比,這種方法不僅填補了數據空白,還大大提高了估計精度,平均絕對誤差的減少就是明證。交通狀態估計的這種進步凸顯了 GAI 在復雜交通場景中改善 UGV 導航和決策的潛力 [121]。
除標準 GAN 外,cGAN 也可用于根據原始測量結果生成相應的系統狀態估計變量 [123]。cGAN 框架采用傳感器的原始測量值作為條件約束,解決了在動態環境中準確估計多個無人機運動的難題。文獻[124]中的作者將 Social LSTM 網絡[130]的單個運動預測與 Siamese 網絡[131]的全局運動洞察相結合,實現了綜合運動狀態預測。這種方法在準確預測無人飛行器軌跡方面表現出色,這對有效的集群導航至關重要。通過有效地分離和融合單個運動和全局運動,基于 cGAN 的框架表現出色,與原始的 Social LSTM 相比,提高了多目標跟蹤的性能。
此外,VAE 在捕捉無人機無線信道中的時間相關性方面的應用凸顯了 GAI 在通信系統中的重要性,它通過生成真實、多樣的信道樣本,改善了信道狀態估計和信號清晰度[125]。這種探索延伸到了基于擴散的分數模型和深度歸一化流,用于生成復雜的狀態變量分布,展示了 GAI 以更靈活的方式建模和估計狀態的能力,從狀態變量(即位置、速度和方向)到這些分布的復雜高維梯度[126, 127]。
GAI 在 UV 集群狀態估計方面的多功能性體現在兩個方面:通過對抗機制生成缺失信息的能力和融合各種數據源進行綜合狀態分析的能力。這些能力可以在復雜的運行場景中實現更精確的狀態估計。
UV 的環境感知通常是指飛行器實時感知和了解周圍環境的能力 [142]。這是 UV 集群實現自主導航和完成任務的關鍵技術。這種技術通常涉及使用激光雷達、攝像頭和毫米波雷達等傳感器與外部環境進行交互 [143]。GAI 的各種創新應用明顯推進了 UV 的環境感知領域,詳見表 III。例如,由于運動造成的運動模糊、不利的天氣條件和不同的飛行高度等內在限制,無人機經常捕捉到低分辨率的圖像。為解決這一問題,作者在 [132] 中介紹了一種名為 Latent Encoder Coupled Generative Adversarial Network(LE-GAN)的框架,旨在實現高效的高光譜圖像(HSI)超分辨率。LE-GAN 中的生成器使用短期光譜空間關系窗口機制來利用局部-全局特征并增強信息帶特征。判別器采用真實圖像和生成圖像的概率分布之間基于瓦瑟斯坦距離的損失。這種框架不僅提高了 SR 質量和魯棒性,而且通過學習潛空間中高分辨率 HSI 的特征分布,緩解了模式坍縮問題造成的光譜空間失真[132]。
除了通過提高遙感分辨率來改善 UV 的精度外,GAI 更常見的應用是生成合成數據集,這表明了數據不足導致模型精度降低的難題[138]。例如,一個名為軌跡 GAN(Trajectory GAN,TraGAN)的框架用于從高速公路交通數據中生成逼真的變道軌跡[133]。另一個基于 GAN 的框架名為 DeepRoad,用于自動駕駛系統的測試和輸入驗證 [134],通過生成不同天氣條件下的駕駛場景來提高測試的可靠性。VAE 也被用于生成更真實、更多樣的碰撞數據,以解決傳統數據增強方法的局限性 [136]。此外,結合 VAE 和 GANs 的圖像轉換框架可用于將模擬圖像轉換為真實的合成圖像,以訓練和測試變化檢測模型 [135,137],不過它們仍需要真實圖像作為參考。此外,[139] 中的作者介紹了一種利用文本到圖像擴散模型的方法,用于生成逼真、多樣的無人機圖像,這些圖像以不同的背景和姿勢為背景。通過合并背景描述和基于地面實況邊界框的二進制掩碼生成的 20,000 多張合成圖像,檢測器在真實世界數據上的平均精度提高了 12%。
GAI 的另一個應用領域是場景理解或字幕制作。這種方法包括使用 CLIP 前綴進行圖像字幕處理,將 UV 捕捉到的圖像的視覺內容轉化為準確的文本描述,以便在 UV 中進行決策[140]。另一種方法是部署生成知識支持變換器(GKST),通過融合來自不同車輛視角的圖像信息來增強特征表示和檢索性能。[141]. 這些技術的一個有趣方面是,它們能夠處理和解釋復雜的視覺輸入,提供與人類感知非常相似的上下文理解水平。這種能力在動態環境中尤為有益,因為在動態環境中,快速準確地解讀視覺數據對有效決策至關重要。
總之,GAI 的生成能力在 UV 的環境感知領域證明是非常寶貴的。從提高圖像分辨率到生成合成數據集、創建多樣化的測試環境以及推進場景理解,GAI 是推動 UV 演進和提高其理解周圍環境并與之互動的效率的基石技術。
自主性是指系統在沒有人類干預的情況下執行任務或決策的能力[152]。自主水平代表了 UV 在完全依賴機載傳感器、算法和計算資源的情況下獨立運行的能力。在 UV 蜂群中,自主水平取決于各種因素,如任務的類型和復雜程度、規劃和執行路線的能力等 [153]。表 IV 說明了 GAI 的集成在推進這些自主能力方面的關鍵作用。
在 UV 集群合作戰略領域,GAI 的應用體現在生成對抗模仿學習(GAIL)與多智能體 DRL 的集成上。例如,作者在 [144] 中介紹了一種基于多智能體 PPO 的生成式對抗仿真學習(MAPPO-GAIL)算法,該算法采用多智能體近似策略優化來同時采樣軌跡,完善策略和價值模型。與傳統的 DRL 搜索算法相比,該算法將網格概率用于環境目標表示,將平均目標發現概率提高了 73.33%,而平均損壞概率僅降低了 1.11%。此外,GAIL 還可用于在虛擬環境中訓練無人機執行導航任務,從而適應復雜多變的場景 [146]。
此外,還提出了一種基于 VAE 的模型,名為 BézierVAE,用于車輛軌跡建模,特別是安全驗證。BézierVAE 將軌跡編碼到潛在空間,并使用貝塞爾曲線對其進行解碼,從而生成多樣化的軌跡。與傳統模型 TrajVAE 相比,BézierVAE 顯著減少了 91.3% 的重構誤差和 83.4% 的不平滑度[133],大大提高了自動駕駛車輛的安全性驗證[147]。在自主機器人調度方面,COIL 利用 VAE 生成優化的定時調度,大大提高了運行效率 [148]。最后,在多智能體軌跡預測中,考慮到意圖和社會關系的復雜性,采用了受條件 VAE 啟發的 GRIN 模型來預測智能體軌跡。雖然復雜系統面臨挑戰,如遵守物理定律等上下文規則,但可以通過使用特定解碼器或代理模型來近似這些限制,從而應對挑戰[149]。
在 UV 的路由規劃中,變壓器架構與 DRL 相結合,用于優化多個合作無人機的路由。與傳統算法相比,該方法性能優越,并行處理效率高,可持續獲得高回報 [150]。
增強 UV 的自主性對其獨立和合作的集群行動至關重要。GAI 的生成能力應用于多個方面,從生成新軌跡到完善路由策略,以及在不同場景中模仿智能體的路由行為。這些多樣化的應用展示了動態和適應性強的解決方案,對于 UV 在復雜多變的環境中高效、獨立地導航和運行至關重要。
在多智能體 UV 群的任務和資源分配領域,GAI 引入了有效的方法,提高了這些系統的效率和適應性。傳統方法通常依賴于固定算法和啟發式方法,但這些方法并不總能滿足動態和復雜環境的要求 [159]。如表 V 所示,GAI 為這些具有挑戰性的場景提供了必要的靈活性。
有人提出了一種基于 GAIL 的算法,用于為 DRL 重建虛擬環境,其中生成器生成專家軌跡,判別器將專家軌跡與生成的軌跡區分開來 [154]。這種方法可以創建一個接近真實世界條件的虛擬邊緣計算環境。它為計算資源分配多智能體 DRL 方法提供了探索和推斷獎勵函數的場所,同時避免了任意探索造成的對用戶體驗的損害。此外,一種基于自動編碼器的方法被應用到匈牙利算法中,以減輕數據速率矩陣中出現的相同權重造成的信息模糊問題,尤其是在蜂窩用戶(CU)和設備到設備用戶(D2DU)之間的帶寬和功率資源分配中[155]。該方法利用潛空間作為超參數,提供了一個最佳的重構成本矩陣,以協助資源分配決策。
此外,作者在 [156] 中提出了一種基于擴散模型的人工智能生成最優決策(AGOD)算法。該算法可根據實時環境變化和用戶需求進行自適應和響應式任務分配。正如深度擴散軟行為者批判(D2SAC)算法所展示的那樣,該算法通過整合 DRL 進一步提高了功效。與傳統的 SAC 方法相比,D2SAC 算法在任務完成率方面提高了約 2.3%,在效用收益方面提高了 5.15%[156]。傳統的任務分配方法假定所有任務及其相應的效用值都是事先已知的,而 D2SAC 則不同,它可以解決選擇最合適服務提供商的問題,因為任務是實時動態到達的。與傳統方法相比,D2SAC 在完成率和效用方面都有顯著的性能提升。
在聯合計算和通信資源分配領域,由于 UV 的獨立性質和電池限制,有效管理的重要性在 UV 中更加突出。文獻[157]中提出的基于擴散的模型提供了一種先進的方法,用于設計語義信息傳輸的最佳能源分配策略。該模型的一個主要優勢是能夠迭代改進功率分配,確保在 UV 群動態環境造成的不同條件下優化傳輸質量。在傳輸距離為 20 米、傳輸功率為 4 千瓦的條件下,這種基于擴散模型的人工智能生成方案超過了其他傳統的傳輸功率分配方法,如平均分配(名為 Avg-SemCom)和基于置信度的語義通信(Confidence-SemCom)[157],迭代次數約為 500 次,傳輸質量提高了 0.25。
另一方面,作者在論文[158]中提出結合 LLM 探索提升 GAI 在多智能體 UV 群任務和資源分配方面的能力。利用 LLM 先進的決策和分析能力,為每個用戶創建了獨立的 LLM 實例,以實現 "通過以下方式減少網絡能耗 "的初衷Δp=0.85W"轉化為一系列細節任務,如調整發射功率和信道測量。然后將結果提示給 LLM,由 LLM 添加后續任務并指示相關執行器采取行動。通過在 LLM 上的集成,無人機智能體成功地在 2 個回合內實現了省電目標。盡管進一步的仿真結果表明,當智能體數量增加時,當前的 GPT-4 在維持多個目標方面會遇到一些困難。這種整合標志著 UV 蜂群在自主性和功能性方面的顯著進步。
總之,GAI 大大推進了多智能體 UV 群的任務和資源分配領域。從創建生動的仿真環境供分配算法探索,到迭代調整分配策略和打破粗略的任務細節意圖,GAI 展示了處理動態環境和各種挑戰的強大能力。
如第二節所述,UV 的一個關鍵應用是作為移動基站重建通信網絡[46, 47, 48, 49, 164]。在這種情況下,有效的定位策略至關重要,它能以有限的 UV 實現最大的用戶覆蓋范圍,從而確保無縫接入。此外,當 UV 蜂群以分層結構部署時,領導 UV 充當指揮中心,確保子 UV 之間的有效通信覆蓋對于任務分配和協作至關重要。如表 VI 所示,各種 GAI 可滿足高效網絡覆蓋和車對車(V2V)通信的需求。
雖然利用無人機作為移動站來提供動態無線通信中的臨時網絡鏈接正變得越來越流行,但由于無人機高度、移動模式、空間域干擾分布和外部環境條件等因素的不同,優化網絡可能非常復雜,這帶來了獨特的挑戰。為解決有限無人機的網絡覆蓋優化問題,作者在 [160] 中提出使用 cGAN。該框架包括一個用于建模和預測最佳網絡配置的生成器、一個用于評估這些配置在真實世界場景中的效率的判別器,以及一個用于適應性和可擴展性的編碼機制。基于 cGAN 的方法不僅保證了無人機的最佳定位,還簡化了計算復雜度。作者在文獻 [163] 中提出的另一種解決方案利用基于自我注意的變壓器來預測用戶的移動性,并改進空中基站的布置。變壓器模型能夠捕捉時空相關性并處理長輸入和輸出序列。與常規部署方案相比,基于變壓器的方案在覆蓋率方面取得了顯著提高,比常規方案提高了 31% 以上[167],比基于 LSTM 的方案提高了 9% 以上。
在對 UV 蜂群中的安全導航至關重要的 V2V 通信領域,車輛經常會通過轉發圖像來交流環境數據。然而,由于傳輸中斷、環境噪聲和車輛運動造成的噪聲,這些圖像可能會被破壞。為解決這一問題,作者在 [162] 中整合了用于圖像復原和網絡優化的 GDM。GDM 可使車輛通過減少數據傳輸和通信延遲,將傳輸的圖像恢復到原始質量。基于隨機微分方程的 GDM 具有迭代特性,善于完善車聯網網絡解決方案,特別是在路徑規劃等領域。例如,GDM 以初步路徑啟動優化,然后根據關鍵性能指標逐步改進。該過程利用這些指標梯度來引導路徑修改,以實現最優解。與傳統的 DQN 方法相比 [168],所提出的基于 GDM 的方法在 300 個歷時[162]的平均累積獎勵中實現了 100% 的增長。
總之,對于網絡覆蓋和可達性,GAI 可以直接生成定位策略,也可以充當編碼器,通過捕捉空間信息來增強傳統算法。在效率方面,GAI 可作為一個框架,利用語義信息減少數據傳輸,同時通過引導生成保持通信。然而,盡管這些發展代表了管理 UV 蜂群的飛躍,但仍有一些領域有待進一步探索。例如,[162] 中的作者提出了整合其他模式以提高通信效率的問題。這為未來研究在 UV 網絡中整合多模態數據處理提供了機會。這種探索可以大大提高這些技術對不同網絡拓撲結構和環境條件的適應性。此外,GAI 有可能促進 UV 蜂群部署中的自主決策,這為推動該領域的發展提供了一條大有可為的途徑。通過擴大 GAI 的應用范圍,研究人員可以針對各種復雜的現實世界場景進一步優化 UV。
安全和隱私是 UV 蜂群的重要方面,尤其是在軍事和監控應用中。將 GAI 集成到這些領域可為增強系統安全性和確保隱私提供創新解決方案。如圖 6 所示,一個有趣的潛在應用是利用 GAI 生成虛假數據或模擬通信活動的能力來充當 "蜜罐",誤導潛在攻擊者并加強系統安全性[176]。LLM 生成的 "蜜罐 "可作為額外的保護層,傳播虛假信息,迷惑和誘捕攻擊者,從而增強蜂群的集體安全性。在蜂群網絡中創新性地使用語言處理技術,是保護自動駕駛汽車免受復雜網絡威脅的一個新領域。表七詳細介紹了 GAI 在 UV 蜂群安全和隱私保護中的應用。
自動駕駛 GAN(ADGAN)[169]是 GAI 在隱私保護領域的一個顯著應用。ADGAN 是一種基于 GAN 的圖像到圖像轉換方法,旨在保護車輛攝像頭位置數據的隱私。ADGAN 通過移除或修改圖像中的背景建筑物來實現這一目標,同時保留了識別交通標志和行人等其他物體的功能。語義通信是增強 UV 群安全性的有效手段,因為它能去除與任務無關的背景圖像。此外,ADGAN 引入了多判別器設置,提高了圖像合成性能,并提供了更強的隱私保護保障,可抵御更強大的攻擊者[169]。另一個類似的應用是基于 GAN 的框架,該框架通過改變可識別的特征來保護街景圖像中的身份隱私,例如用逼真的背景替換移動的物體 [172]。
在軌跡數據隱私方面,TrajGAN 通過生成合成軌跡來保護軌跡數據的隱私[170]。這些軌跡遵循與真實數據相同的分布,同時掩蓋了用戶的個人位置和身份。它們保留了真實數據的統計屬性,并捕捉到了人類的移動模式。不過,TrajGANs 在創建密集的軌跡表示時可能會面臨挑戰,特別是在時間戳和路段方面,而且可能無法識別數據中的一些罕見或特殊事件。為了進一步加強保護,作者在 [171] 中提出了 LSTM-TrajGAN 框架。該框架由三部分組成:一個生成器,用于生成和預測真實的軌跡配置;一個判別器,用于將這些配置與真實數據進行比較,以驗證其真實性和實用性;以及一個專門的編碼機制,利用 LSTM [177] 循環神經網絡對軌跡數據及其各自的時間戳進行時空嵌入。使用軌跡-用戶鏈接(TUL)算法作為攻擊者,對其隱私保護效果進行了評估[178]。在真實世界的語義軌跡數據集上進行評估后發現,與隨機擾動(66.8%)和高斯地理掩碼(48.6%)等傳統地理掩碼方法相比,所提出的方法能將攻擊者的準確率從 99.8% 降低到 45.9%,從而實現更好的隱私保護[179]。這些結果表明,LSTM-TrajGAN 可以更好地防止用戶被重新識別,同時保留真實軌跡數據的基本時空特征。
VAE 也被用于保護 UV 軌跡隱私。文獻[173]中的作者利用 VAE 創建合成車輛軌跡,通過在數據中添加噪聲來確保不同的隱私。這種方法有助于有效模糊車輛位置,但由于添加了噪聲,可能會導致一些數據失真。如文獻[174]所述,聯合學習中的變形器通過在網絡間只共享基本數據特征來提高自動駕駛的隱私性。這種方法提高了隱私性,但面臨著通信鏈路穩定性和外部干擾的挑戰。
為了保護車輛網絡安全,作者在文獻 [175] 中提出了一種基于變壓器的入侵檢測系統,為車輛網絡提供了一種復雜的解決方案。該系統采用自我注意機制分析控制器局域網(CAN)報文,將其準確地分類為各種車內攻擊,如拒絕服務、欺騙和重放攻擊。作者在 [174] 中提出的另一個基于變壓器的模型是將變壓器集成到聯合學習設置中。這種方法可以在自動駕駛汽車網絡中共享關鍵數據特征而不是原始數據。這種方法能最大限度地減少敏感數據的暴露,同時還能實現協同決策和計算,從而大大提高了隱私保護。
總之,GAI 在 UV 群中的應用徹底改變了安全和隱私措施,特別是在軍事和監控等敏感領域。"蜜罐 "和基于 GAN 的框架等技術展示了 GAI 在數據處理方面的能力,從而增強了安全性。此外,在針對軌跡隱私的聯合學習中實施 VAE 和轉換器,以及先進的入侵檢測系統,都凸顯了 GAI 在防范復雜網絡威脅方面的適應性和有效性。
UV安全是另一個關鍵問題,包括系統故障的檢測、隔離和解決。與避免碰撞或為 UV 集群制定安全路徑規劃策略等與這些系統的自主水平更密切相關的其他安全問題不同[184],UV 安全研究突出了 UV 系統內部漏洞(包括算法和硬件故障)帶來的獨特挑戰。該領域的研究旨在通過開發方法和技術,使這些系統能夠在潛在故障影響車輛性能或安全之前有效識別并排除故障,從而提高 UV 運行的整體可靠性和安全性。
監測運行參數以檢測 UV 系統故障對于確保其安全性和效率至關重要。有人提出了一種新穎的框架,該框架使用 LSTM 網絡與自動編碼器相結合,能夠從車輛性能數據中持續學習 [181]。這一框架增強了系統精確定位和逐步處理故障的能力。LSTM 在處理時間序列數據方面的能力使這種方法在各種因素都可能影響車輛性能的動態環境中尤為有效。LSTM 自動編碼器可以生成代表潛在故障場景的合成數據點,從而增強訓練數據集,使模型能夠從更廣泛的條件中學習,并根據模擬數據在檢測不同類型的無人機誤操作方面達到 90% 的準確率,在分類方面達到 99% 的準確率。這大大提高了 UV 系統的安全性和運行效率。在隨后的發展中[182],無人機故障檢測和分類取得了進展,特別是通過基于 FPGA 的硬件加速,速度提高了四倍,而能耗卻降低了一半。這項研究進一步確定了 GAI 的關鍵考慮因素,表明模型計算可針對實時操作進行優化。在無人機群中的成功部署也表明,類似的策略可以提高 GAI 在動態環境和復雜任務協調中的性能。
另一方面,VAE 提出了在 UV 蜂群中進行故障和異常檢測的復雜方法。作者在 [180] 中提出了一種新方法,即在代表 UV 正常運行的數據上訓練 VAE。這種方法有助于 VAE 理解什么是標準性能。學習過程涉及輸入數據的重建,其中模型準確復制原始數據的能力是識別操作一致性的基礎。重構誤差與標準值的重大偏差預示著潛在的故障或異常。通過對輸入數據進行重構并計算所產生的誤差,基于 VAE 的方法在檢測故障和異常方面的平均準確率達到了 95.6%[180]。利用 VAE 映射關系能力的優勢在于,它們能熟練發現訓練數據集中不存在或未考慮的新故障或問題。這一特點確保了基于 VAE 的系統能夠在各種不可預測的場景中保持高水平的安全性和可靠性。在經常會遇到各種環境條件和操作挑戰的 UV 操作中,這一特性顯得彌足珍貴。然而,必須承認的是,VAE 的性能會受到各種因素的影響,其中包括 VAE 模型本身的復雜性、用于訓練的數據的質量和多樣性,以及將重建錯誤標記為潛在故障的特定閾值。
此外,作者在文獻[183]中利用時空變壓器網絡對電動汽車的電池故障進行診斷和故障預報,因為該網絡具有專門的架構,在提取多個時空尺度的關鍵特征方面表現出色。采用時空變壓器網絡進行車輛電池故障診斷和故障預報,在識別預警信號和預測不同時空尺度的故障方面表現出色。它利用車載傳感器數據分析和預測電池故障演變的能力完全符合 UV 的需求,因為 UV 的運行嚴重依賴于電池的完整性。通過集成這樣一個模型,預測性維護策略得到了極大的增強,可以在 24 小時到一周的精確時間窗口內及早發現異常并預測電池故障。這種方法不僅可以通過優化車輛計劃來減少停機時間,從而提高運營效率,而且在防范可能危及車輛安全的潛在電池故障方面也發揮著至關重要的作用。
在 UV 運行中,確保安全性和可靠性不僅包括檢測故障,還包括隔離受影響的組件以防止出現更多問題,并實施有針對性的解決方案來解決問題。例如,在傳感器故障導致信息丟失等相對較小的問題上,VAE 和 GAN 的使用說明了 GAI 在故障管理中的創新應用[185]。通過優化 VAE-CGAN 結構,這些模型可以重新生成缺失的時間序列數據,從而證明了它們在運行故障損害數據完整性的情況下的有效性。這一功能尤其適用于無人機農業監控等應用,在這些應用中,數據收集的連續性至關重要。
在解決危及 UV 蜂群運行的嚴重問題時,當前研究中一個引人入勝的方面是為脫穎而出的 "在哪里墜毀 "決策協議制定策略[186]。這一概念針對的是在發生嚴重故障時,UV 應如何以及在何處終止運行的預定協議需求,以最大限度地減少次生危害。這些協議包括無人機的緊急著陸區、USV 和 UUV 的特定下沉點以及 UGV 的受控停止措施。然而,這些預定義協議可能無法適應所有可能出現的情況。因此,將 GAI 集成到 UV 星群故障管理策略中為提高安全性提供了一種先進的方法。例如,通過分析實時傳感器數據和了解蜂群動態的復雜性,變形金剛能夠做出情境感知決策,為受損的 UV 準確識別最安全的終止點 [187]。采用這種 GAI 不僅可以改善關鍵故障的管理,還能降低二次事故的風險。
自 1950 年代以來,人工智能以一種非凡的方式發展,它不僅改變了行業,也改變了我們的日常生活。世界各地的武裝部隊正在以多種方式整合人工智能的使用,由于該領域尚未受到監管,因此正在探索和開發各種基于人工智能的自主系統。眾所周知,基于人工智能的自主系統的首次使用是由DARPA(美國)開發的動態和分析重新規劃工具(DART),用于安排供應鏈和個人移動,以解決其軍隊的后勤效率問題。從那時起,它已經走了很長一段路,在最近的沖突和戰爭中,以破壞性的方式觀察到基于人工智能的自主系統的大規模使用。自主無人機在超出任何反措施范圍的高度等待,以便對系統選擇的目標進行有效的精確打擊。這可能是最簡單但最有效的例子之一,可以詳細說明現代作戰基礎設施如何過渡到集成自主系統。除了具有高有效性和效率的優勢外,這些系統還為士兵提供了3D(沉悶,骯臟和危險)任務的安全,并優化了高昂的作戰成本。
人工智能使用計算機系統模擬自然智能,在該系統中,它感知和感知數據,分析數據,從數據集中學習,然后將其用于所需的決策,而無需人類參與。對于人類來說,圖像是根據存儲在人腦中腦回溝細胞結構中的圖像來感知和理解的,而在 AI 模型中,具有具有權重的神經網絡算法的計算機處理器在數學上學習和感知相同的圖片。
人工智能是機器學習 (ML)、深度學習 (DL) 和自然語言處理 (NLP) 等多個領域的龐大通用集合,它們是根據可用數據集的大小解決各種問題的工具。人工智能的目標是創建一個可以智能和獨立運行的系統。任何 AI 模型的這一目標都涉及培養解決問題的能力、允許持續學習、鼓勵智能、促進創造力以及實現人與 AI 的協同作用。人工智能可以根據它應該執行的任務類型,分別在不熟悉的領域或特定的已知需求中大致分為廣義或狹義。人工智能模型基于傳感器輸入的數據,根據算法處理數據以解釋、預測或采取行動。然后,系統可以分析或提供反饋以適應或自我學習。所有這些都屬于 ML、DL、NLP、語音識別、專家系統、優化、機器人技術、計算機視覺形成自主系統。
基于人工智能的系統的軍事用例很多,涵蓋了上述所有技術,以了解軍事行動的確切動態。這些系統是作戰系統、戰略決策算法、數據處理單元、兵棋推演中的戰斗模擬、目標識別、威脅監測、蜂群、游蕩彈藥、高效的后勤方法、因果關系護理和疏散。 基于人工智能的武裝部隊自主系統由一組多個復雜的子系統組成,其中可能包括傳感器/感知系統、通信設備、基于機器學習和訓練數據的決策算法的執行器,這些執行器不需要任何人工干預即可執行所需的任務。這些系統可以根據其功能和操作分為各種類別,如無人機/無人機/機器人平臺/蜂群或其他作戰系統。
自主系統旨在通過收集信息并在沒有任何人工干預的情況下長時間工作,在不斷變化的環境中實現一系列目標。他們可以自己思考。雖然它們有一個人工智能核心,包括傳感器、通信系統、執行器、基于機器或深度學習的決策算法,但它們也需要是冗余的,與按照道德和法律框架制定的網絡安全措施相結合,應該有足夠的人機界面。
根據戰略用途的類型和特定地理位置的戰術需求,這些自主系統以各種形式設計。最常見的是地面車輛(履帶式、輪式或腿式)和無人機,它們也可以作為集群運行。 海洋自主系統旨在根據情況需要在水下或水面上移動。該系統將武器或傳感器安裝在地面或空中平臺上,專為戰斗、ISR、后勤、目標/火控、搜索和救援等特定作戰場景而設計。自主通信網絡旨在最有效地利用已部署的資源,以實現連續的信息流。以類似的方式,成群的無人機或地面車輛在網狀網絡上工作,其算法旨在避免碰撞,同時在定義的空間中作為一個組保持凝聚力。一群類似于鳥類的無人機在成群結隊、上學和覓食方面工作,而不會因冗余而影響操作必要性。
自主系統是有利的,因為它們可以降低士兵的生命風險,因此可以處理各種對人類來說骯臟、沉悶或危險的任務,如解除爆炸物、敵對條件下的 ISR、戰斗、CI/CT 操作、巡邏、快速反應、搜索和救援、惡劣地形中的后勤、長期操作、事故預防和醫療應用。
這些自主系統的開發、集成、部署和維護是有成本的,但從長遠來看,通過負責任的規劃和決策,它們在整體成本效益方面具有優勢。自主系統降低成本的方式和手段是減少人員費用,減少損失風險,優化資源及其分配,降低維護成本,提高任務效率,減少燃料消耗,操作靈活性,可擴展性和規模經濟。
這個基于人工智能的自主系統領域正在隨著新技術的發展而增長,以增強軍事能力。這些系統充當了力量倍增器,確保了速度和精度,操作的連續性,并具有更好的數據處理和分析能力。這些不斷發展的自主系統與軍事戰略相結合,將導致戰爭的新面貌,使它們成為任何現代作戰部隊不可或缺的資產,確保提高效率,降低生命風險并節省成本,但是,負責任地部署這些系統存在道德,法律和政策相關的問題,以避免任何意外和不希望的情況,因為對手也將開發導致沖突的此類系統。降低與自主系統相關的任何風險至關重要,包括負責任的決策、保持監督和故障安全檢查。
參考來源:Narendra Tripathi中校
機器人因其高效的感知、決策和執行能力,在人工智能、信息技術和智能制造等領域中具有巨大的應用價值。目前,機器人學習與控制已成為機器人研究領域的重要前沿技術之一。各種基于神經網絡的智能算法被設計,從而為機器人系統提供同步學習與控制的規劃框架。首先從神經動力學(ND)算法、前饋神經網絡(FNNs)、遞歸神經網絡(RNNs)和強化學習(RL)四個方面介紹了基于神經網絡的機器人學習與控制的研究現狀,回顧了近30年來面向機器人學習與控制的智能算法和相關應用技術。最后展望了該領域存在的問題和發展趨勢,以期促進機器人學習與控制理論的推廣及應用場景的拓展。
它具有感知能力、決策能力和執行能力,能夠協助 甚至替代人類完成各種復雜、繁重和危險的任務。 任何涉及重復性工作的工業系統都可以通過機器人 實現自動化作業,進而在降低人力成本的同時顯著 地提高生產效率和產品質量[1] 。這也預示著現代 智能工廠能夠根據需求擴大或縮小生產規模。典型 的機器人設備包括冗余度機器人[2] 、柔性機器人[3] 和移動機器人[4]等。近年來,機器人在軍事戰爭、 太空探索、醫療手術和其他重要行業中得到了廣泛 的應用[5-7] 。 在第四次工業革命的推動下,機器人系統,特 別是機械臂,受到世界各國的廣泛關注[8] 。機器人 技術與多學科技術相結合,逐步推動了人類社會生 產和生活方式的轉變。以機器人視覺和觸覺為代表 的機器人感知技術加速了機器人學習與控制概念的 產生和發展[9] 。因此,機器人系統能夠克服源于自 身或環境的不確定性因素,從而提高任務執行的效 率和穩定性。具體而言,機器人需要解決由磨損、 老化、故障等因素引起的結構不確定性問題和由環 境、任務等因素決定的決策問題[10] 。因此,亟需開 發其自我學習和實時校準功能。近年來,相關的學 習技術提高了具有不確定性的機器人系統的容錯能 力和決策能力[10-12] 。另一方面,在任務執行過程 中,機器人期望保持穩定且高效的工作性能。因 此,它需要基于特定的控制方案和高效的網絡算法 以實時獲得合適的控制信號。這要求機器人系統具 備優越的容錯能力和可靠的控制精度,并在此基礎 上以人工智能的模式實現復雜多變的任務[13-14] 。 近年來,腦機接口技術[15] 、手術機器人[16] 、康復 機器人[17-18] 、多機器人集群[19] 等新興概念的發展 對機器人控制技術與應用提出了實時性、精確性、 穩定性、容錯性、魯棒性等多方面實際要求。隨后 出現了一系列先進的控制技術,如遠中心控制[20] 、 視覺伺服控制[21] 、模型預測控制[22] 、阻抗控制[23] 。 因此,探索機器人學習與運動控制相結合的新模式 是近年來國內外機器人研究的重點。 基于神經網絡的機器人學習與控制技術已成為 前沿科技之一,也是智能制造、智慧醫療和無人駕 駛領域中的重要瓶頸技術之一。近 30年來,相關 的研究成果顯著地提高了機器人系統的功能性、精 確性和智能性[24] 。機器人學習技術利用數據驅動 方法分析、預測和估計帶有不確定性的模型或策 略[25] ;機器人控制技術結合學習信息與控制算法 實現功能性運動規劃[26] 。在多源傳感器的協助下, 機器人系統可以收集、處理和開發數據,進而集成 數據庫,甚至搭建數據云[27] 。隨后,基于神經網絡 的機器人算法根據測量數據實現優化的學習與控制 過程。 神經網絡具備強大的擬合能力和并行處理能 力,可以被理解為機器人的“大腦” 。面向機器人學 習與控制的主流神經網絡方法包括神經動力學 (neuraldynamics,ND)方法[28-32] 、前饋神經網絡 (feedforwardneuralnetwork,FNN)方法[33-34] 、遞歸 神經網絡(recurrentneuralnetwork,RNN)方法[35-36] 和強化學習(reinforcementlearning,RL)方法[11,37] 。 ND方法通過構建常微分方程(ordinarydifferential equation,ODE)形式或對應的離散變體系統以求解 機器人學習與控制問題,并實現實時參數辨識[28-30] 和機器人控制[31-32] 。FNN方法屬于一種機器學習 算法,能夠通過更新權值逼近機器人系統的特定函 數,從而開發相應的數據驅動技術[33-34] 。與 FNN 方法不同,RNN方法的網絡節點之間可以構建循環 連接,允許一些節點的輸出影響其后續輸入,在機 器人學習領域有顯著的應用價值[35-36] 。值得注意 的是,ND方法和 RNN方法在結構上存在交集。當 ODE形式的計算網絡的輸入神經節點數大于或等 于 2時,該系統即屬于 RNN方法,也可被稱為 ND 方法[38] 。為了便于闡述,本文分別對 ND方法與 RNN方法進行單獨介紹。RL方法能夠解決機器人 與環境交互過程中的決策問題,并通過試錯的方式 實現機器人特定技能的學習[11,37] 。以上 4種機器 人學習算法均屬于人工智能算法的范疇[39] 。其主 要任務是開發智能信息處理應用,從而設計與人類 智能相似的機器人系統。在真實場景中,機器人的 交互過程產生的學習與控制問題通常需要多種技術 協同解決[40] 。這要求機器人系統通過傳感器獲取 大量的測量數據,進而驅動學習和控制過程。因此, 機器人學習與控制系統的發展必然伴隨著傳感器技 術、神經網絡方法、數學理論等重要技術的進步[41] 。 如圖 1所示,本文回顧了用于解決機器人學習 與控制問題的神經網絡方法以及相關應用,其中, 機器人學習包括機器人模型學習和機器人策略學習 兩個方面。相關的神經網絡方法被歸納為 ND方 法、FNN方法、RNN方法和 RL方法.
近年來,無人機因其小巧靈活、智能自主等特點被廣泛應用于民用 和軍事等領域中,特別是搜索偵察過程中首要的目標跟蹤任務。無人機 視覺目標跟蹤場景的復雜性和運動目標的多變性,使得目標特征提取及 模型建立困難,對目標跟蹤性能帶來巨大的挑戰。本文首先介紹了無人 機視覺目標跟蹤的研究現狀,梳理了經典和最新的目標跟蹤算法,特別 是基于相關濾波的跟蹤算法和基于深度學習的跟蹤算法,并對比了不同 算法的優缺點。其次,歸納了常用的目標跟蹤數據集和性能評價指標。 最后,展望了無人機視覺目標跟蹤算法的未來發展趨勢。
近年來,無人機憑借其體積小、動作靈活及易于 操控等特點,在民用、軍事以及科學研究等多個領域 得到越來越廣泛的應用,例如,惡劣環境下的電力線 路檢測、大氣環境檢測、搶險救災、偵察敵情、敵方 目標跟蹤、搜索戰場情報等[1-6] 。在無人機的諸多 任務類型中,無人機目標跟蹤有著重要的研究意義, 并逐漸成為目前無人機領域熱點研究方向之一[7-8] 。**無人機的目標跟蹤能夠通過多種方式來實現,比如,在跟蹤目標上綁定電子標簽或安裝 GPS追蹤 器來輔助跟蹤,但該類方法需要與目標進行近距離 接觸,在實際跟蹤任務中往往難以做到。**隨著計算 機視覺技術的飛速發展,基于視覺的無人機目標跟 蹤已成為最接近人類行為且最為直觀的跟蹤形式。 具體地,視覺目標跟蹤是指在給定某視頻初始幀中 感興趣區域(如人、車輛等)的情況下,對視頻中的 運動目標進行特征提取,根據提取到的目標特征來 預測未來時間幀中運動目標的位置和大小,從而完 成對目標的追蹤任務[9-11] 。
無人機視覺目標跟蹤與地面目標跟蹤相比,面 臨著 4個挑戰:1)由于空中視野廣闊,干擾物體數 量較多,目標與其他物體之間、目標與背景之間相 互干擾,可區分性差,導致目標模型的可辨識性和 排他性不高,建立精準的目標模型較困難。2)當 無人機飛行在一定高度時,圖像影幅變大,分辨率 和清晰度變低,地面上的待跟蹤目標尺度變得很 小,目標特征和紋理變得稀少,使得目標特征提取 困難,特征表示不顯著,導致目標檢測和跟蹤難度 變大。3)無人機在跟蹤過程中易受到風力等外界 因素的影響,導致相機抖動、視角變化、運動模糊 等現象頻繁,從而易產生跟蹤漂移和丟失的情況, 實現魯棒、穩定、長時的無人機目標跟蹤較為困 難。4)由于無人機自身結構特點,大多數無人機 僅有一個 CPU,計算資源有限,無法承受復雜度太 高的運算,如何在保證精度的情況下開發復雜度低 的跟蹤算法是極具挑戰的。隨著無人機技術的發展 和計算機信息處理能力的提升,盡管無人機視覺目 標跟蹤算法有了突破性進展,但由于上述難點的存 在,無人機視覺目標跟蹤算法仍有很大的發展空間。 視覺目標跟蹤方法主要分為生成類跟蹤方 法[12-13] 和判別類跟蹤方法[14-16] 。生成類跟蹤方法 通常忽略背景信息的影響且假設目標外觀在一定時 間內保持不變,故該方法無法處理和適應復雜的跟 蹤變化。判別類跟蹤方法,尤其是基于相關濾波和 基于深度學習的算法,在一定程度上解決了樣本不 足的問題,且能夠提取目標中更多有用信息,顯著 提高目標跟蹤準確率和速度。判別類跟蹤算法出現 之后,經典的生成類跟蹤算法逐漸淡出,其主要原 因是因為這些算法無法適應復雜多變的跟蹤場景, 其魯棒性和準確性被前沿算法所超越。然而,由于 上述目標跟蹤挑戰的存在,判別類跟蹤算法仍存在 一些不足。為了構建一個更精準、更高效且更魯棒 的通用跟蹤器,未來研究應重點關注高效的在線訓 練和失跟后的重新檢測機制,提高目標被完全遮擋 后的跟蹤效果,同時,應關注如何引入遷移學習和 對抗學習等前沿方法來提高特征提取有效性,提高 算法對低分辨率的小目標的跟蹤性能,從而應用于 機載無人機來完成實時跟蹤任務。文[1]重點對無 人機目標跟蹤算法的共同框架進行了詳細描述,分 析了現有技術的不足,并提出了目標跟蹤未來的發 展方向。文[16]系統地介紹了基于生成類和判別 類的視覺目標跟蹤算法,但未涉及目標跟蹤效果的 相關評估標準,且未對無人機空中監視場景中的難 點進行分析。為使相關研究人員對無人機視覺目標 跟蹤領域的研究有更加清晰深入的了解,本文結合 無人機自身結構特點,首先對應用于無人機領域的 目標跟蹤算法進行了梳理總結,分析了各算法的核 心思想及優缺點。其次,考慮到跟蹤算法在無人機 平臺上的應用前景,重點對基于相關濾波的跟蹤算 法和基于深度學習的跟蹤算法進行了詳細介紹,闡 述了各算法的特點和貢獻,并對比了各算法的跟蹤 效果,圖 1為兩類目標跟蹤算法的分類框架圖,圖 中所涉及的算法縮寫及其全稱如表 1所示。接著, 歸納了無人機目標跟蹤領域的跟蹤數據集和跟蹤性 能評價標準。最后,對全文進行了總結,并對無人 機視覺目標跟蹤的發展方向進行了展望。
機器學習是現代戰爭系統的關鍵組成部分。本文探討了人工智能的 7 個關鍵軍事應用。
機器學習已成為現代戰爭的重要組成部分,也是我(Nicholas Abell)作為陸軍退伍軍人和數據科學家的主要興趣點。與傳統系統相比,配備人工智能/機器學習的軍事系統能夠更有效地處理大量數據。此外,人工智能由于其固有的計算和決策能力,提高了作戰系統的自我控制、自我調節和自我驅動能力。
人工智能/機器學習幾乎被部署在所有軍事應用中,軍事研究機構增加研發資金有望進一步推動人工智能驅動系統在軍事領域的應用。
例如,美國國防部 (DoD) 的國防高級研究計劃局 (DARPA) 正在資助一種機器人潛艇系統的開發,該系統預計將用于從探測水下水雷到參與反潛行動的各種應用。此外,美國國防部在 2017 財年在人工智能、大數據和云計算方面的總體支出為 74 億美元。預計到 2025 年,軍事 ML 解決方案的市場規模將達到 190 億美元。
以下是機器學習將在未來幾年證明其重要性的七種主要軍事應用。
來自全球不同國家的國防軍隊正在將人工智能嵌入陸地、海軍、空中和太空平臺上使用的武器和其他系統中。
在基于這些平臺的系統中使用人工智能,可以開發出更少依賴人工輸入的高效作戰系統。它還增加了協同作用,提高了作戰系統的性能,同時需要更少的維護。人工智能還有望使自主和高速武器能夠進行協作攻擊。
軍事系統通常容易受到網絡攻擊,這可能導致機密軍事信息丟失和軍事系統損壞。然而,配備人工智能的系統可以自主保護網絡、計算機、程序和數據免受任何未經授權的訪問。
此外,支持人工智能的網絡安全系統可以記錄網絡攻擊的模式,并開發反擊工具來應對它們。
人工智能有望在軍事后勤和運輸中發揮關鍵作用。貨物、彈藥、武器和部隊的有效運輸是成功軍事行動的重要組成部分。
將人工智能與軍事運輸相結合可以降低運輸成本并減少人力工作負荷。它還使軍用艦隊能夠輕松檢測異常并快速預測組件故障。最近,美國陸軍與 IBM 合作,使用其 Watson 人工智能平臺來幫助預先識別 Stryker 戰車的維護問題。
正在開發人工智能技術以提高復雜戰斗環境中目標識別的準確性。這些技術使國防軍隊能夠通過分析報告、文檔、新聞提要和其他形式的非結構化信息來深入了解潛在的作戰領域。此外,目標識別系統中的人工智能提高了這些系統識別目標位置的能力。
支持人工智能的目標識別系統能力包括基于概率的敵人行為預測、天氣和環境條件匯總、潛在供應線瓶頸或漏洞的預測和標記、任務方法評估以及建議的緩解策略。機器學習還用于從獲得的數據中學習、跟蹤和發現目標。
例如,DARPA 的競爭環境中的目標識別和適應 (TRACE) 計劃使用機器學習技術在合成孔徑雷達 (SAR) 圖像的幫助下自動定位和識別目標。
在戰區,人工智能可以與機器人手術系統 (RSS) 和機器人地面平臺 (RGP) 集成,以提供遠程手術支持和疏散活動。美國尤其參與了 RSS、RGP 和其他各種用于戰場醫療保健的系統開發。在困難條件下,配備人工智能的系統可以挖掘士兵的病歷并協助進行復雜的診斷。
例如,IBM 的 Watson 研究團隊與美國退伍軍人管理局合作開發了一種稱為電子病歷分析器 (EMRA) 的臨床推理原型。這項初步技術旨在使用機器學習技術來處理患者的電子病歷,并自動識別和排列他們最嚴重的健康問題。
模擬與訓練是一個多學科領域,它將系統工程、軟件工程和計算機科學結合起來構建計算機模型,使士兵熟悉在軍事行動中部署的各種作戰系統。美國正在越來越多地投資于模擬和訓練應用。
美國海軍和陸軍都在進行戰爭分析,啟動了幾個傳感器模擬程序項目。美國海軍已經招募了 Leidos、SAIC、AECOM 和 Orbital ATK 等公司來支持他們的計劃,而美國陸軍的計劃得到了包括 SAIC、CACI、Torch Technologies 和 Millennium Engineering 在內的公司的支持。
威脅監控和態勢感知在很大程度上依賴于情報、監視和偵察 (ISR) 工作。ISR 行動用于獲取和處理信息以支持一系列軍事活動。
用于執行 ISR 任務的無人系統既可以遠程操作,也可以按照預先定義的路線發送。為這些系統配備人工智能有助于防御人員進行威脅監控,從而提高他們的態勢感知能力。
具有集成 AI 的無人駕駛飛行器 (UAV) - 也稱為無人機 - 可以巡邏邊境地區,識別潛在威脅,并將有關這些威脅的信息傳輸給響應團隊。因此,使用無人機可以加強軍事基地的安全,并提高軍事人員在戰斗中或偏遠地區的安全性和效率。
人工智能在軍事技術硬件和軟件的大規模采用,向我們展示了現代戰爭中令人難以置信和可怕的范式轉變。毫不奇怪,世界上最大的軍隊比其他任何事情都更加關注這項技術,而這場技術競賽的獲勝者可能會比美國在研制原子彈后擁有更多的全球影響力。 (作者:Nicholas Abell,美國陸軍退伍軍人)