當今的威脅形勢瞬息萬變,能否在充分了解情況的基礎上做出以數據為導向的決策,關系到任務的成敗。然而,傳統的分析方法往往無法應對現代國防和情報行動所面臨的大量復雜數據。
這正是知識圖譜驅動的先進人工智能(AI)提供變革性解決方案的地方。通過利用大型語言模型和知識圖譜的協同作用,軍事領導人和分析人員可以獲得基于背景的洞察力,從而領先于新出現的威脅,并自信地做出關鍵決策。
國防領域的有效決策需要對行動背景有細致入微的了解,即形成現實世界場景的實體、關系和特定領域知識的錯綜復雜的網絡。在人命關天、容錯率極低的情況下,這種背景意識至關重要。
獨立的人工智能模型雖然功能強大,但缺乏可靠支持關鍵任務應用所需的上下文基礎。這些模型通常是在廣泛的互聯網數據基礎上訓練出來的,容易產生幻覺、與事實不符,而且對國防部隊面臨的復雜作戰現實缺乏敏感性。
知識圖譜為人工智能提供了一個專為國防領域量身定制的豐富、結構化的知識庫,從而彌補了這一關鍵差距。這些圖對現實世界的概念、實體(人員、組織、地點等)及其相互關聯的關系進行建模,捕捉可靠的決策支持所需的深層背景。
通過將大型語言模型(LLM)與知識圖譜相結合,我們可以釋放出強大的協同效應,將 LLM 的生成能力與圖譜中編碼的結構化上下文知識相結合。這種混合方法通常被稱為 "情景(上下文)人工智能",它允許 LLM 生成不僅流暢連貫,而且基于相關的、經過驗證的事實和特定領域知識的響應。
例如,負責分析潛在威脅場景的情境人工智能系統可以利用知識圖譜來了解相關行為體、其動機、歷史模式和地緣政治背景。有了這些豐富的背景知識,LLM 就能生成細致入微的評估、可行的建議和應急計劃,以應對錯綜復雜的局勢。
情境人工智能在國防和情報領域的應用意義深遠:
雖然情景人工智能潛力巨大,但將其部署到關鍵任務防御應用中需要一個強大的信任和問責框架。知識圖譜通過編碼事實性的、可驗證的知識并實現透明的推理過程,為此奠定了重要的基礎。
此外,人工智能的道德原則,如公平性、可解釋性和人類監督,必須嵌入到這些系統的開發和部署中。這將確保情境人工智能能夠增強人類決策者的能力,同時遵守最高的問責和負責任使用標準。
隨著威脅的演變和現代戰爭復雜性的加劇,知識圖譜和情景人工智能的整合成為國防部門和特種作戰部隊的戰略要務。通過利用這一變革性技術的力量,可以獲得決定性的優勢,在日益動蕩的世界中保持任務準備狀態并保障國家安全。
注:任務準備(戰備):指軍隊、組織或個人為完成任務所做的準備工作,包括物資、裝備、人員、訓練等方面的準備。
隨著各國和國防組織適應快速變化的安全和戰爭環境,生成式人工智能正在成為一種重塑戰略、能力和行動的變革性技術。
生成式人工智能正在重塑國防情報界和軍事部門的工作方式,以及他們提供戰場態勢感知和決策的方式。由于人工智能算法能快速關聯來自不同傳感器系統的數據,如地面傳感器、衛星、無人機和其他可用的戰場信息源,因此能實時描繪作戰環境,從而增強在壓力最大、時間最緊迫的條件下作戰的指揮官的決策能力。從這個意義上說,生成式人工智能在作戰情報中的應用與美國國防部 2017 年宣布的 “Project Maven ”計劃有異曲同工之妙。
生成式人工智能改變了國防軍事訓練和模擬。利用人工智能算法,軍事人員現在可以接觸到高度逼真的動態訓練模擬環境,幾乎可以適應無限多的作戰場景--所有這一切都具有成本效益且無風險。北約正在將人工智能融入其訓練計劃,讓這些模擬環境適應受訓人員的行動和反應。這表明人工智能有能力設計獨特的學習體驗,適應受訓者的需求,并優化他們的認知準備狀態。
將生成式人工智能融入國防領域,對無人監視、偵察和作戰行動自主系統的研究和開發起到了重要作用。人工智能允許無人機和無人駕駛車輛在沒有人類直接控制的情況下執行任務,從而提高了速度、耐力和風險。以色列國防軍最近開始使用人工智能驅動的自主無人機在邊境合規場景中執行軍事監視和偵察任務,這證明了這些技術的作戰優勢和戰略價值。
生成式人工智能在網絡安全領域也大有可為。它可以幫助識別、預防和應對網絡威脅--使用人工智能算法來識別可能預示著網絡攻擊的新穎和前所未見的模式。美國網絡司令部利用人工智能增強其網絡防御能力,其結果是為關鍵信息基礎設施提供更加積極主動的安全態勢,并改善運行的連續性。
印度在國防領域的生成式人工智能整合方面處于領先地位。印度政府已經認識到人工智能在戰區內外形成下一代能力支柱的潛力,如今已在國防部門啟動了多項宏偉的人工智能設計。根據一項名為 “AI for ALL ”的倡議,印度政府正在將人工智能融入其 “Mae in India ”和 “數字印度 ”的敘事中。在國防研究與發展實驗室(DRDO)內部,量子計算和人工智能正被用于生成用于指導無人駕駛航空器和水下航行器、網絡防御以及軍事平臺預測性維護的系統。
計算是實現生成式人工智能的挑戰之一。GMLV 技術表明,先進的人工智能需要強大的計算能力,而這一直是部署下一代神經網絡所面臨的問題。因此,美國可能有更多機會在美國出口商、銀行業、保險業和醫療保健業的新興市場中發揮重要作用,并利用國家安全局開發的加密系統--這是對信息時代研發工程設計的重要性的另一種諷刺--所有這一切都源于印度對創生式人工智能的戰略擁抱,以及其預期的近乎無限的創造和組合,而這些都是事先無法預測的。
隨著生成式人工智能在國防工業中的應用持續升溫,我們肯定會看到在預測性維護、物流優化、下一代武器系統開發和其他領域出現更多技術。但是,正如所指出的,人工智能技術的快速發展也帶來了一些實質性的挑戰,尤其是在安全和道德領域。這些挑戰包括:自主武器擴散風險的蔓延;戰場上的潛在競爭;人工智能驅動的沖突升級動態;以及無數其他挑戰。要應對這些挑戰,就必須開展大量國際合作,并作出全球承諾,制定人工智能倫理準則和監管框架。
生成式人工智能即將徹底改變國防工業,開啟全新的能力和效率世界。但是,我們利用這一強大技術的能力將承擔沉重的責任,并將成為全球安全計算中的一個重要考慮因素。
參考來源://www.linkedin.com/pulse/generative-ai-shaping-present-future-defense-lbcrf
生成式人工智能的應用領域遠遠超出了數字助理和在線工具的范疇;其現在正涉足一個風險極大的領域:軍事行動。在國防戰略領域的這一飛躍代表著人工智能應用的重大發展,既是對戰略家和技術專家的挑戰,也令他們興奮不已。
來自特殊競爭研究項目(SCSP)的專家強調了正在進行的實驗,即根據特定的軍事條令和情報對生成式人工智能進行訓練,以制定作戰規劃。這一發展并不是要取代人類戰略家,而是要增強他們的能力。生成式人工智能在簡化復雜軍事行動的起草方面潛力巨大,不過實際執行仍嚴格受人類控制,并遵守防止自動致命行動的嚴格標準。
這個想法很吸引人:現在,生成式人工智能可以管理各種任務,從平凡的任務,如規劃一周的雜貨清單,到復雜的任務,如總結絕密情報或制定詳細的軍事戰略。不過,這項技術仍然需要一個 "認知副駕駛員"--由人類來監督和驗證人工智能的計劃。
以下是生成式人工智能在全球軍事行動中的三種應用方式。
1.自動威脅模擬:生成式人工智能用于網絡防御,根據以往事件中的模式自動生成網絡攻擊模擬。這有助于軍事網絡防御團隊制定強有力的應對措施,并針對潛在的網絡威脅進行更有效的訓練。
2.場景規劃和策略制定:在戰略行動中,生成式人工智能可以創建詳細的兵棋場景和策略,為特定的軍事形勢提供多種可能的應對措施。這有助于培訓和行動規劃,為軍事戰略家提供基于不同方法的各種潛在結果。
3.信息和心理作戰:生成式人工智能可用于制作量身定制的信息內容和心理作戰活動,以高度適應特定目標受眾的文化和社會背景。這種應用包括生成有說服力的通信,以戰略性的方式影響人們的觀念和行為。
從簡單的人工智能任務到更復雜的操作,這表明在未來,生成式人工智能有可能協調軍事和民用生活中更廣泛的方面。這包括從后勤支持到戰略規劃的方方面面,所有這些都將在人類的監督下進行,以避免出現令人擔憂的 "天網 "情況。
對于編劇來說,這項技術的發展提供了豐富的素材。人類角色將如何與能力越來越強的生成式人工智能互動?這種互動會產生什么樣的沖突和解決方案?敘事的可能性既廣泛又深刻,反映了現實世界與技術關系的復雜性。
隨著新一代人工智能不斷滲透到生活的方方面面,它對地緣政治穩定的影響是深遠的,這與第一次世界大戰前的時代有著令人不安的相似之處。然而,在人類和人工智能顧問的精心指導下,我們有希望比過去更有效地駕馭這個動蕩的時代。
這些發展不僅是技術上的,也是鼓舞人心的。在人工智能重塑戰場的同時,它也重塑了敘事景觀,為每個人角色和故事提供了新的挑戰和機遇。無論是在探索戰爭的未來、人工智能的倫理,還是人工智能驅動的企業世界中的微妙動態,不斷演變的人工智能角色都是一個等待探索的敘事金礦。
隨著人工智能的不斷發展,敘事也應與時俱進,以挑戰角色和吸引讀者的方式融入這些技術進步。這不僅是一次反思未來的機會,也是一次通過講述故事塑造未來的機會。
參考來源:AI4ES
戰斗機的轟鳴聲和坦克的隆隆聲不再是現代戰爭的唯一形象。人工智能(AI)正在迅速改變戰場,開創了一個數據驅動決策和增強態勢感知的時代。通過利用實時數據共享和分析,人工智能使軍隊能夠優化部署效率、加強戰略規劃,并在不斷變化的戰場上獲得關鍵優勢。
傳統上,軍事行動一直受到 "戰爭迷霧 "的阻礙。"戰爭迷霧 "是指困擾戰時環境的不確定性和信息不完整性。關鍵數據往往來得太晚或支離破碎,阻礙了指揮官做出明智決策的能力。人工智能通過促進各種平臺的實時數據收集和傳播,彌補了這一差距。
想象一下這樣一種場景:配備了人工智能傳感器的地面部隊實時檢測到敵人的動向。這些數據會即時轉發給進行空中偵察的無人機,由無人機確認威脅。與此同時,人工智能算法對信息進行分析,精確定位敵人的位置和潛在弱點。然后,這些情報會通過增強現實顯示器傳送給指揮官,為他們提供全面、最新的戰場畫面。
在人工智能的幫助下,這種無縫的信息流使指揮官能夠迅速果斷地做出反應。他們可以戰略性地部署部隊,發起有針對性的反攻,并最大限度地降低自己人員的風險,從根本上改變戰爭的態勢。
人工智能的真正威力不僅在于數據共享,還在于它能從海量信息中提取有意義的模式和見解。先進的算法可以分析情報報告、衛星圖像和截獲的通信,識別潛在威脅、敵軍動向,甚至后勤薄弱環節的跡象。
例如,人工智能可以分析過去沖突的歷史數據,識別敵人的戰術并預測潛在的作戰策略。這樣,指揮官就能先發制人地部署反制措施,贏得戰略優勢。此外,人工智能還能篩選截獲的大量通信數據集,精確定位敵方領導人,發現后勤樞紐,為有針對性的行動提供有價值的情報。
人工智能在軍事領域的應用遠不止戰場。來探討一些具體的例子:
后勤和資源管理: 人工智能可以優化供應鏈,預測裝備需求,簡化向地面部隊運送必需品的流程。這可確保士兵在需要時獲得所需資源,從而提高作戰效率。
網絡安全防御: 人工智能驅動的系統可以持續監控軍事網絡中的可疑活動,在網絡威脅造成重大損失之前將其識別出來并予以消除。在網絡戰時代,這一點至關重要,因為一個漏洞就可能導致關鍵基礎設施癱瘓。
自主系統和機器人技術: 人工智能在自主車輛和武器系統的開發中發揮著至關重要的作用。配備人工智能的無人機可以執行偵察任務,識別并攻擊目標,甚至執行復雜的后勤任務。這些無人系統可最大限度地降低人類生命危險,并實現更精確、更高效的行動。然而,使用自主武器系統會引發倫理問題,需要認真考慮。
必須強調的是,人工智能并不是要取代人類在軍事領域的決策。相反,它是一種強大的力量倍增器,能增強人的能力,為指揮官提供做出明智選擇所需的信息和洞察力。歸根結底,關鍵決策的責任始終在于人類指揮官。
將人工智能融入軍事行動會帶來一些挑戰。圍繞自主武器的倫理考慮以及可能產生的意外后果需要仔細研究。此外,確保人工智能系統免受網絡攻擊至關重要。此外,訓練數據中的偏見可能導致歧視性結果,因此確保人工智能開發的公平性和透明度至關重要。
隨著人工智能技術的不斷發展,它對軍事行動的影響無疑將更加深遠。我們可以期待看到在實時數據處理、增強自主能力,甚至開發能夠協助復雜戰略規劃的人工智能系統方面取得進一步的進步。
然而,確保在軍事領域負責任地開發和部署人工智能至關重要。國際合作和遵守道德準則將是塑造未來人工智能戰爭的關鍵。
總之,人工智能正在徹底改變戰爭的方式。通過促進實時數據共享、提供可操作的見解以及為先進武器提供動力,人工智能正在改變戰場,開創軍事戰略的新時代。在我們向前邁進的過程中,負責任的發展和對道德原則的承諾將是確保人工智能作為一種善的力量,在提高軍事能力的同時捍衛人類價值的關鍵。
隨著當前人工智能和機器學習程序的快速發展,大多數國家都在優先發展新的和改進的自主系統,目的是以更快的反應速度、更低的成本和更少的人力來執行多項任務。現代戰爭正變得越來越自主,包括作戰在內的多項功能正被委托給日益復雜的程序和系統。本文旨在分析使用人工智能的武器系統在軍事上的應用,特別是巡飛彈藥。文章將分析這些系統當前的能力、在納戈爾諾-卡拉巴赫沖突(2020 年)和最近的烏克蘭-俄羅斯戰爭(2022 年)中的應用,同時還將考慮當前和未來系統將面臨的法律和倫理挑戰。文章將從安全角度分析不同自主系統的當前應用和未來趨勢,并從法律和倫理角度分析主要挑戰。
縱觀歷史,戰爭一直主要是人與人之間的摩擦行為,"是人與人之間的肉體較量,每個人都使用武力迫使我們的敵人按照我們的意愿行事"。在這一論點中,技術在戰爭中一直扮演著關鍵角色,往往通過其成功的條令運用來重塑作戰方式。事實上,諸如火器和火車的發明、機械化車輛和后來的裝甲車輛以及作戰飛機的發展,以及核武器的誕生等技術突破,不僅改變了戰爭戰術的動態,而且改變了應如何發動戰爭的戰略。在過去幾十年里,人工智能(AI)領域的技術成就使更新的系統越來越多地融入我們日常生活的許多方面,目前在信息和通信技術(導航、社交媒體算法等)、工業(流程自動化和優化)、市場營銷和銷售甚至醫療保健領域都有應用。人工智能系統也在軍事工業綜合體中大顯身手,既是提供支持功能的平臺,如情報、監視、導航和增強的指揮與控制(C2)能力,也是協助完成識別和選擇目標以及實施打擊等不同復雜任務的平臺。本文將分析人工智能的后一種功能、其目前的應用以及此類能力對國際人道主義法的挑戰。不過,在探討其軍事能力之前,有必要澄清什么是人工智能、自主系統與遙控平臺的區別,以及人與機器如何相互作用。
人工智能有許多不同的定義。最簡單地說,人工智能可以定義為一種系統、程序或機器,能夠以類似人類的智能快速執行不同的復雜任務。由于人工智能技術在各個領域的廣泛應用和可能的應用(及影響),大多數國家的軍隊都實施了自己的人工智能戰略,以利用該技術的固有優勢,如增加反應時間、降低成本和更好地防御網絡威脅。在與武器系統集成方面,應區分兩個不同的類別:a) "自動";b) "自主"。紅十字國際委員會(紅十字委員會)是這一領域的主要機構之一,該委員會認為,這兩類系統在自主程度、功能(即可執行的任務及其復雜性)以及最重要的人類控制或監督程度方面存在很大差異。自動系統可定義為 "非遠程控制,但一旦部署就能以自足和獨立的方式運作 "的武器。自動崗哨槍、傳感器融合彈藥和某些反車輛地雷就屬于此類武器。根據這一定義,一些軍事機構認為,無人機等無人駕駛航空系統(UAS)既不應被視為完全 "自動化",因為它們可以遙控駕駛;也不應被視為完全遙控,因為導航、起飛和著陸等功能可以 "自動化"。英國國防部試圖為自動化系統提供一個包羅萬象的定義,即那些 "根據一個或多個傳感器的輸入,在邏輯上按照預先確定的規則進行編程,以提供可預測結果的系統"。
另一方面,還有 "自主 "武器系統,未來可能會由更先進形式的人工智能集成。雖然沒有一個統一的定義,但許多軍事手冊和國際機構似乎都同意一些核心特征。例如,紅十字國際委員會(ICRC)將自主武器系統定義為 "無需人工干預即可選擇目標并對其施以武力的武器;美國國防部(US DoD)將其定義為 "一旦啟動,無需人類操作員進一步干預即可選擇并攻擊目標的武器系統",而英國國防部(UK MoD)則給出了如下定義:"能夠理解更高層次意圖和方向的系統;根據這種理解和對環境的感知,這種系統能夠采取適當行動,實現理想狀態;它能夠從眾多備選方案中決定行動方案"。因此,從這些定義中可以看出,自主武器系統的共同特征是:a) 此類系統能夠執行多項功能;b) 無需人類監督和/或批準即可運行;c) (至少在未來)還能根據周圍環境的變化進行動態調整。
一些軍事部門還根據復雜程度對自主武器系統進行了進一步分類。例如,美國國防部根據自動化和控制程度,將自主武器系統分為三大類:1)"自主武器系統"(如上定義);2)"人類監督自主武器系統":旨在為人類操作員提供干預和終止交戰的能力;3)"半自主武器系統":一旦啟動,僅用于攻擊人類操作員選定的單個目標或特定目標群(美國國防部,2023 年)。最后,自主武器系統還可根據其人機一體化、控制和監督的程度細分為三個不同類別:1)"人在回路武器":僅能在人類指令下選擇目標和投放力量的系統;2)"人在回路武器": 2)"人在環上武器":可在人類操作員的監督下選擇目標和投放武力,人類操作員可控制其行動;以及 3)"人在環外武器":能夠在沒有任何人類輸入或互動的情況下選擇目標和投放武力的系統。
目前已投入實戰的具有半自主能力、屬于 "人在回路中 "類別的武器系統包括 "法蘭克斯 "1-B 近防武器系統(CIWS),這是一種艦載 20 毫米火炮系統,可自主探測、跟蹤和攻擊目標(雷神公司,2023 年);反火箭和防空平臺,如以色列的 "鐵穹 "和德國的 "歐瑞康天盾",均可自主探測、跟蹤、選擇和交戰。目前具有一定程度自主功能的另一類武器系統是巡飛彈藥,其能力和使用情況將在接下來的章節中分析。
過去十年中,巡飛彈藥的擴散和復雜性迅速增加。如今,20 多個國家正在生產和使用此類系統,預計未來幾年這一趨勢還將加劇。與無人機不同,巡飛彈藥是一種無人駕駛飛行器,旨在識別、跟蹤并在撞擊目標后用重量不等的爆炸彈頭在可視范圍外交戰。巡飛彈藥設計為便攜式、易于發射和一次性使用,使其成為火炮和復雜導彈系統的一種成本效益高、更安全、更靈活的替代品。事實上,得益于這些特點,它們能夠(根據制造商的說法)執行多種類型的任務(情報、監視、偵察、精確打擊、反炮擊等),同時在一定區域上空長時間巡飛,從而有更多的決策選擇。雖然目前使用的巡飛彈藥的大部分任務都是自動執行的,如起飛和著陸,但更先進的系統擁有不同程度的自主能力,如導航、目標探測、跟蹤,有些甚至是交戰。事實上,以色列的 "哈比 "和 "哈羅普 "無人機、俄羅斯的 "柳葉刀-3"、土耳其的 "Kargu-2 "以及美國的 "彈簧刀"(300 和 600 系列)等巡飛彈藥都配備了全球定位系統制導、光電和紅外傳感器以及圖像處理設備,使它們(在不同程度上)能夠自主識別和跟蹤目標。最值得注意的是,"哈比 "和 "哈羅普 "巡飛彈藥被許多分析家認為是自主武器系統的典范,能夠在有限甚至沒有人工干預的情況下攻擊目標(這里指的是來自防空系統的雷達信號)。Kargu-2 是最新的系統之一。它是 STM 于 2020 年為土耳其武裝部隊開發的一款小型四旋翼飛行器,遙控或自主飛行距離為 10 千米,飛行時間為 30 分鐘,據稱配備了電子光學(EO)和紅外(IR)相機,以及使用機器學習算法進行識別的自動目標識別(ATR)系統。它還能與其他機型組成蜂群。雖然該公司稱其系統采用了 "人在環內原則",但聯合國專家小組進行的一項調查似乎表明,利比亞民族和睦政府可能已使用 Kargu-2 無人機自主 "攻擊目標,而無需操作員與彈藥之間的數據連接"。
只是在最近幾年,巡飛彈藥才被廣泛用于沖突場景。本節將分析兩個使用此類系統的案例研究及其軍事影響。
2020 年 9 月,阿塞拜疆部隊在納戈爾諾-卡拉巴赫東部地區發起進攻行動,該地區是阿塞拜疆與現已解體的亞美尼亞阿爾扎赫共和國之間的爭議地區。在這次進攻中,阿澤里部隊廣泛使用以前購買的以色列 Harop 和 Harpy-2 型彈藥,以及其他土耳其制造的無人機,有計劃地消滅目標。這些輕型 "自殺式無人機 "的射程可達 200 公里,可手動或自動操作,并配備 16 公斤重的爆炸彈頭。據 OSINT 消息來源稱,這些系統在 9 月攻勢的最初幾天發揮了巨大作用。事實上,由于這些系統具有反輻射能力,阿塞拜疆在 9 月 30 日期間和之后對亞美尼亞 T-72 坦克縱隊以及亞美尼亞地對空導彈防御系統和炮兵陣地發動了一系列精心協調的攻擊,為阿塞拜疆空軍在一些地區發動攻擊以及阿塞拜疆地面部隊奪取蘇沙等戰略要地鋪平了道路。考慮到亞美尼亞陸軍加強了大量武器庫,這些系統對亞美尼亞軍事裝備和人員造成的影響令人印象深刻。官方數字各不相同,但根據基于 OSINT 的研究,在短短大約 40 天的交火和沖突中,阿塞拜疆無人機和巡飛彈藥成功發現并摧毀了大量坦克、裝甲運兵車、火炮、雷達和防空導彈基地(9K33 Osa、遠程 S-300 和至少 1 個 Tor-M2KM)以及電子戰設備。可以說,阿塞拜疆軍事攻勢的成功在很大程度上歸功于對無人偵察機和自殺式彈藥的協調使用,這些彈藥由于體積小,成功地躲過了亞美尼亞防空系統的雷達信號。雖然亞美尼亞的防空導彈確實擊落了一些自殺式彈藥,但考慮到損失的相對數量,這些系統顯然在有效削弱亞美尼亞防御能力方面發揮了決定性作用。
烏克蘭戰爭是迄今為止最廣泛使用 "自殺式無人機 "的戰爭,尤其是俄羅斯武裝部隊。據報道,在沖突的第一年,俄羅斯空軍由于在烏克蘭防空部隊手中損失了大量飛機而在空中優勢爭奪戰中失去了優勢,此后俄羅斯開始更加重視混合使用各種類型的偵察無人機,如扎拉 421 和奧蘭、埃勒龍系列,以及像柳葉刀-3 這樣的巡飛彈藥,還有數量更多的伊朗制造的沙赫德-136。后兩者已被用于打擊特定的高價值目標,如防空系統、炮兵陣地和其他靜態目標,以及前線后方數公里處的敏感民用基礎設施(發電站、輸電線路、水庫等)。
事實證明,沙赫德-136 尤其是俄羅斯武裝部隊的寶貴資產,也是烏克蘭地對空導彈(SAM)和火炮基地的頭疼問題。該系統于 2022 年 9 月被引入俄羅斯武庫,作為一種臨時且相對廉價的解決方案,旨在填補俄羅斯無人機艦隊和巡航導彈武庫耗盡所造成的能力缺口,同時由于西方長期制裁制造這些系統所必需的高科技組件,導致當地生產能力嚴重下降。沙赫德-136 系統是一種遠程 "單向攻擊 "巡飛彈藥,裝備有用于偵察的照片和視頻設備,以及 30 至 50 公斤重的爆炸彈頭。它的射程據稱超過 2000 公里,巡飛速度高達 180 公里/小時,可巡飛數小時。這些系統中的多個系統還可以從一輛普通卡車上 "齊射 "發射。就自主功能而言,Geran-2 系統非常簡單。最值得注意的是,得益于其導航系統以及衛星和無線電信號的結合,"杰蘭-2 "可以預先編程,自主飛行并攻擊預先設定的特定地點。最新型號還配備了俄羅斯 Komet-M 數字接收器,用于改進導航、信號和抗干擾。一些分析家不排除自殺式無人機的變型也可能安裝用于打擊硬目標的紅外攝像機,使系統能在末端階段直接、更準確、自主地飛向熱源。但這一能力尚未得到證實。與納戈爾諾-卡拉巴赫沖突類似,像 "Geran-2 "這樣的巡飛彈藥從戰術和戰略層面產生的影響都相當大。從作戰角度看,伊朗彈藥提供的更遠射程,加上其低廉的成本、低雷達探測率以及從前線任何地方大量發射的固有能力,正在日益擴大烏克蘭防空系統的缺口,從而使其他高價值目標,如炮兵陣地、補給和通信網絡以及關鍵基礎設施,更容易受到縱深攻擊。雖然大部分攻擊都能被動能防御系統(如 ZSU 和導彈防空系統)有效抵御,但由于隨時發射的系統數量龐大,一些系統還是設法穿過了烏克蘭的防空系統,摧毀了 4 輛自行榴彈炮、2 輛裝甲運兵車以及若干電力基礎設施。其數量之多、用途之廣、射程之遠、續航時間之長,使其非常適合于低成本的 SEAD 行動,以及探索和發現防御漏洞,為巡航導彈攻擊鋪平道路。
國際人道主義法(IHL)是國際公法中關于限制戰爭對非戰斗人員有害影響的規則,在這一法律領域,包括巡飛彈藥在內的自主武器系統一直是學者們爭論的主題。法律學者已經確定了至少三個主要的法律挑戰,這些挑戰是由更多獨立自主系統的潛在發展和使用所帶來的。這些挑戰具體涉及 1949 年日內瓦四公約《第一附加議定書》規定的區分、相稱和預防規則,即
它們區分合法目標與民用目標和平民的能力;
附帶傷害平民和損壞民用物體的風險;
人類操作員理解該系統并驗證其操作符合國際人道主義法的能力。關于第一點,有觀點認為,要使系統能夠自行區分合法與非法目標,就必須為其配備掃描儀和傳感器,使其能夠區分民用物體和軍事目標。然而,在戰爭中,環境往往會迅速發生變化,因此,這些事先根據特定條件和特定參數設計和編程的系統將無法考慮戰場上隨時間發生的所有變化因素和變量,并相應調整其交戰參數,從而導致潛在的不可預測的結果,以及攻擊中的歧視。即使在人類仍能控制觸發器的系統中,研究也表明,在快節奏、壓力大和不確定的條件下,操作員可能只是不加批判地過度依賴系統的建議,這種情況被稱為 "自動化偏差"。第二點與戰爭中的相稱性原則有關,該原則要求軍事指揮官在攻擊前采取一切可能的預防措施,以免造成與預期軍事優勢不相稱的過度損害(《第一附加議定書》第 51.5b 條)。因此,在決定自主實施攻擊時,這些系統需要通過定性分析來判斷對合法目標實施的攻擊是否被認為是相稱的,或者是否已經采取了所有可行的預防措施,從而使程序符合這一規則。有人認為,這種背景評估始終需要人類的判斷。第三點也是最后一點涉及自主系統的可預測性。事實上,為了遵守相稱性和預防性規則,指揮官必須確信他選擇使用的武器將以某種方式發揮作用,并將產生可預測的可靠效果。如果武器在任何環境或情況下的效果都無法控制或無法完全預見,那么他就有可能違反國際人道主義規則(同上)。紅十字國際委員會對這些與注入了更先進、更獨立的人工智能的日益自主的系統相關的法律和倫理風險尤為關注。紅十字國際委員會一直主張為自主武器系統的開發和使用制定一套全面的、具有約束力的規范和規則,例如限制目標類型、地理范圍和使用環境,并規定必須有人類監督。從這個意義上說,2016 年,在《聯合國特定常規武器公約》(CCW)的工作范圍內成立了一個政府專家組,討論與致命性自主武器系統領域的技術有關的問題。2019 年,政府專家小組通過了一份指導原則清單,旨在幫助成員國在討論致命性自主武器系統的法律和倫理風險時找到共同點。雖然政府專家小組定期召開會議討論此類問題,但制定此類系統監管框架的道路似乎還很遙遠,主要原因是對致命性自主武器系統尚無一個共同認可的定義,因為它需要涵蓋更廣泛的人機交互主題。
在過去幾年中,巡飛彈藥的發展、使用和能力都有所提高。最近在納戈爾諾-卡拉巴赫和烏克蘭發生的沖突表明,它們能以相對低廉的價格有效打擊前線后方的高價值目標,通常可替代巡航/SEAD 導彈和火炮系統,在某些情況下,其射程甚至超過它們。然而,正如其他作者所言,巡飛彈藥也有可能用于其他目的,如早期預警和近距離空中支援。在過去幾年中,歐洲各國對投資采購現有或開發本地解決方案的興趣日益濃厚,而大國作為該領域的技術領導者之一,正在從烏克蘭戰爭中吸取教訓,以制定使用和防御巡飛彈藥的進攻和防御條令。就此類系統的能力而言,發展趨勢似乎是提高系統的自主性,這在很大程度上是由于人工智能在機器學習和深度學習領域的進步,以及需要規避預警設備造成的無線電信號干擾,而 AWS 對這些干擾是免疫的。事實上,一些自主系統已經在使用商業化的先進人工智能軟件和硬件,這些軟件和硬件使用不同的傳感器,能夠通過分析大量數據自動識別物體并對其進行分類。例如,烏克蘭武裝部隊最近推出了一款名為 "Saker "的人工智能無人機,它既能進行第一人稱視角(FPV)攻擊,也能在人類監督下自主識別目標并可能與之交戰,其目的是限制反應時間,并消除干擾的影響,否則操作員將無法直接控制。最后,關于與國際人道主義法相關的難題,雖然一些西方國家,最著名的是美國和英國,已經實施了開發和使用 "負責任的 "人工智能和自主系統的指導方針和法規,如全面審查和在交戰階段持續的人類監督,但其他國家可能并不傾向于這樣做。其背后的原因是,由于其生產成本低廉、用途廣泛,再加上易于與日益先進的人工智能集成,大規模生產能夠自主實施攻擊的系統(即使效率較低)將更具優勢,這一點在烏克蘭已經可以看到。
參考來源:MONDO INTERNAZIONALE
前美國防部長馬克·埃斯珀(Mark Esper)曾經說過:“歷史告訴我們,那些率先利用新一代技術的人往往在未來幾年的戰場上擁有決定性的優勢”。
人工智能和機器學習將在塑造現代戰場方面發揮關鍵作用。這些技術增強了態勢感知能力,優化了決策,并提供了競爭優勢。
從用于偵察的自主無人機到用于供應鏈管理的預測分析,它們的影響是深遠的。在烏克蘭的行動凸顯了這些技術的應用:由克里斯·希爾博士領導的陸軍物資司令部分析小組利用作戰數據在需要時協助需求規劃,同時無縫預測和協調需求。快速處理此類大量數據的能力允許實時威脅檢測和響應,從而挽救生命和資源。
此外,人工智能有助于開發復雜的網絡防御系統,并支持創造更智能、適應性更強的武器。簡而言之,人工智能和機器學習正在通過提高效率、準確性和整體有效性來徹底改變戰爭。隨著我們繼續開展活動和運營,并在全球范圍內進行投資,情況將保持不變。
總的來說,指揮官和領導者必須信任這項技術,才能在聯合全域作戰中證明其有效。當務之急是,所有梯隊的領導者都必須考慮如何制定和實施與家鄉站的數據訓練策略——以及戰斗訓練中心的參與——以建立對技術的信心,以便領導者能夠以信任的速度運作。
在不斷變化的戰爭環境中,技術進步不斷塑造著武裝部隊的作戰方式。從南北戰爭期間的加特林機槍到二戰期間的DUKW兩棲車輛和M-3半履帶運兵車,技術一直影響著我們的戰斗方式。
在這些進步中,人工智能和機器學習已成為游戲規則的改變者,無疑將徹底改變現代戰場。它們的整合在軍事行動的各個方面,從情報收集到決策等方面都帶來了前所未有的改進。
量子計算和機器學習可以在幾秒鐘內做出比傳統工作人員在軍事決策過程中更多的行動方案,這允許決策速度,這將給我們帶來決定性的優勢。
隨著戰爭性質的變化,我們正處于一個戰略轉折點,正如現已退休的馬克·米利將軍在 2023 年 7 月發表的“聯合部隊季刊”文章《戰略拐點:戰爭性質中最具歷史意義和最根本的變化正在發生——而未來籠罩在迷霧和不確定性中》中所闡明的那樣。
“我們必須努力比敵人少犯錯,”他說。這要求我們的聯合特遣部隊在聯合作戰概念的指導下進行根本性轉變。隨著我們過渡到一個新的戰爭時代,如果我們要贏得“比敵人少犯錯”的戰斗,我們必須確保聯合部隊被納入人工智能和機器學習的整合中。
同時,全面了解戰場對于軍事成功至關重要,人工智能和機器學習將使軍隊能夠利用大數據和實時信息的力量來增強態勢感知能力。配備人工智能算法的自主無人機可以以無與倫比的效率執行偵察任務,捕獲有關敵人動向、地形狀況和潛在威脅的數據。這些信息可以快速處理,使指揮官能夠在使用傳統方法所需時間的一小部分內做出明智的決定。
這種增強的態勢感知能力不僅可以最大限度地降低士兵的風險,還可以對新出現的威脅做出積極反應。簡而言之,訪問可以快速處理和分析的數據,為指揮官和作戰人員的實時決策提供信息,這將改變戰場上的游戲規則。
利用人工智能和機器學習等技術將塑造我們如何在未來的戰斗中采用這一概念,并決定我們如何培訓和發展梯隊領導者,以便在競爭、危機或沖突中利用這項革命性技術。
在“軍事評論”最近的一篇文章中,堪薩斯州萊文沃思堡陸軍聯合武器中心司令米爾福德·比格爾中將談到了我們必須如何通過減少對材料的依賴和提高對信息維度的利用來優化指揮所。
在混亂的戰爭中,瞬間的決策可以決定戰斗的結果。
正如在第二次世界大戰期間的中途島海戰中所看到的那樣,在那場海戰中,決策速度決定了成敗。人工智能和機器學習算法旨在處理大量數據并識別人類可能遺漏的模式。這些工具將改變組織如何更快地做出更好的決策。
將那些經常在“數據脫節”環境中作戰的戰場最邊緣的指揮官提升到行動指揮官和上層之間費力的信息流的犧牲品。
這種能力有助于軍事領導人做出更明智的決策,從選擇最佳戰略到根據實時情報評估最佳行動方案。從歷史數據中得出的預測分析還可以幫助預測敵人的動向并識別其防御中的潛在弱點。這是對指揮官現在利用的人類情報和信號情報流的一大補充。
最后,利用這項技術可以采取更有計劃、更有效的軍事行動方法,從而最大限度地減少傷亡并提高任務成功率。
戰略競爭對手正在部署能力,通過所有領域的多層對峙來對抗對手,這將要求在太空、網絡、空中、海上和陸地上擊敗多層對峙。實時檢測和響應威脅的能力是現代戰爭的重要組成部分。
人工智能驅動的系統可以同時監控多個數據源,從衛星圖像到截獲的通信。通過實時分析這些數據,算法可以識別異常和潛在威脅,從而立即向軍事人員發出警報。這種積極主動的方法能夠實現快速響應和反擊,防止對手占據上風。
無論是對關鍵基礎設施的網絡攻擊還是敵軍的移動,人工智能驅動的威脅檢測系統在維護軍事行動的安全性和完整性方面都具有顯著優勢。
后勤和供應鏈管理是任何軍事行動的命脈。在全球綜合后勤環境中,有太多相互作用的變量,維持者無法有效監控。
如今,人員只能通過各種數據流對車隊和供應商品的歷史數據進行監控。正如 Lone Star Analysis 的 John Price 在 2021 年 8 月發表在“軍事嵌入式系統”上的一篇文章中所寫的那樣,“計算機系統可以提供持續的評估,并且有足夠的機器智能,預測就會變得強大。
人工智能和機器學習通過預測需求模式、識別供應短缺和簡化分銷路線來優化這些流程。這包括人工智能驅動的基于車輛狀態的維護,該維護監控車輛的各個方面,從進氣到排氣以及其中的所有點。
因此,我們將范式完全從工廠轉移到了工廠,現在需求從散兵坑傳到了工廠。基于車輛狀態的維護利用預測性和規范性分析,同時提供持續診斷以及提供問題預測和解決方案處方,從而使人員能夠專注于進行特定調整,以優化軍用車隊的運營可用性。
這不僅確保了部隊擁有必要的資源,而且還最大限度地減少了浪費并降低了成本。通過自動化重復性任務和優化路線,武裝部隊可以更有效地分配資源,并在速度和效率方面保持競爭優勢。這種由人工智能和機器學習實現的精確維持確保響應符合需要,或者從散兵坑移動到工廠,而不是從工廠轉移到散兵坑。
同時,現代戰爭超越了傳統戰場,也包括了網絡領域。人工智能和機器學習在制定針對網絡威脅的自適應防御策略方面發揮著至關重要的作用。
美國防部的OODA - 觀察,定位,決策和行動 - 是作戰人員使用數據不僅實現有根據的決策,而且及時定位的循環。這些技術可以快速識別和響應網絡攻擊,分析模式以區分正常的網絡活動和可疑行為。此外,人工智能驅動的網絡安全系統可以從以前的攻擊中吸取教訓,并不斷提高其檢測和消除新出現的威脅的能力。
隨著世界的不斷發展,沖突的性質也在不斷變化。人工智能和機器學習已成為現代軍事武器庫中不可或缺的工具。他們處理大量數據、加強決策和實現實時響應的能力改變了武裝部隊的運作方式。
從提高態勢感知到徹底改變供應鏈管理和網絡安全,這些技術正在塑造戰爭的未來。
美國防部致力于遵循“設計即使用”的方法,在聯合全域作戰中利用這項技術。在開發解決方案時,每種服務都有不同的要求。
美國陸軍的要求可能是移動中的士兵或地面戰車;相比之下,對于空軍來說,這個案例可能是前沿空軍基地所需要的。
隨著向前邁進,這些技術的整合對于保持軍事優勢和確保軍事人員在現代戰場上的安全和成功仍然至關重要。借助人工智能和機器學習,無疑將能夠“以最先的速度”到達那里。
參考來源,David Wilson,美國陸軍維持司令部司令
自 1950 年代以來,人工智能以一種非凡的方式發展,它不僅改變了行業,也改變了我們的日常生活。世界各地的武裝部隊正在以多種方式整合人工智能的使用,由于該領域尚未受到監管,因此正在探索和開發各種基于人工智能的自主系統。眾所周知,基于人工智能的自主系統的首次使用是由DARPA(美國)開發的動態和分析重新規劃工具(DART),用于安排供應鏈和個人移動,以解決其軍隊的后勤效率問題。從那時起,它已經走了很長一段路,在最近的沖突和戰爭中,以破壞性的方式觀察到基于人工智能的自主系統的大規模使用。自主無人機在超出任何反措施范圍的高度等待,以便對系統選擇的目標進行有效的精確打擊。這可能是最簡單但最有效的例子之一,可以詳細說明現代作戰基礎設施如何過渡到集成自主系統。除了具有高有效性和效率的優勢外,這些系統還為士兵提供了3D(沉悶,骯臟和危險)任務的安全,并優化了高昂的作戰成本。
人工智能使用計算機系統模擬自然智能,在該系統中,它感知和感知數據,分析數據,從數據集中學習,然后將其用于所需的決策,而無需人類參與。對于人類來說,圖像是根據存儲在人腦中腦回溝細胞結構中的圖像來感知和理解的,而在 AI 模型中,具有具有權重的神經網絡算法的計算機處理器在數學上學習和感知相同的圖片。
人工智能是機器學習 (ML)、深度學習 (DL) 和自然語言處理 (NLP) 等多個領域的龐大通用集合,它們是根據可用數據集的大小解決各種問題的工具。人工智能的目標是創建一個可以智能和獨立運行的系統。任何 AI 模型的這一目標都涉及培養解決問題的能力、允許持續學習、鼓勵智能、促進創造力以及實現人與 AI 的協同作用。人工智能可以根據它應該執行的任務類型,分別在不熟悉的領域或特定的已知需求中大致分為廣義或狹義。人工智能模型基于傳感器輸入的數據,根據算法處理數據以解釋、預測或采取行動。然后,系統可以分析或提供反饋以適應或自我學習。所有這些都屬于 ML、DL、NLP、語音識別、專家系統、優化、機器人技術、計算機視覺形成自主系統。
基于人工智能的系統的軍事用例很多,涵蓋了上述所有技術,以了解軍事行動的確切動態。這些系統是作戰系統、戰略決策算法、數據處理單元、兵棋推演中的戰斗模擬、目標識別、威脅監測、蜂群、游蕩彈藥、高效的后勤方法、因果關系護理和疏散。 基于人工智能的武裝部隊自主系統由一組多個復雜的子系統組成,其中可能包括傳感器/感知系統、通信設備、基于機器學習和訓練數據的決策算法的執行器,這些執行器不需要任何人工干預即可執行所需的任務。這些系統可以根據其功能和操作分為各種類別,如無人機/無人機/機器人平臺/蜂群或其他作戰系統。
自主系統旨在通過收集信息并在沒有任何人工干預的情況下長時間工作,在不斷變化的環境中實現一系列目標。他們可以自己思考。雖然它們有一個人工智能核心,包括傳感器、通信系統、執行器、基于機器或深度學習的決策算法,但它們也需要是冗余的,與按照道德和法律框架制定的網絡安全措施相結合,應該有足夠的人機界面。
根據戰略用途的類型和特定地理位置的戰術需求,這些自主系統以各種形式設計。最常見的是地面車輛(履帶式、輪式或腿式)和無人機,它們也可以作為集群運行。 海洋自主系統旨在根據情況需要在水下或水面上移動。該系統將武器或傳感器安裝在地面或空中平臺上,專為戰斗、ISR、后勤、目標/火控、搜索和救援等特定作戰場景而設計。自主通信網絡旨在最有效地利用已部署的資源,以實現連續的信息流。以類似的方式,成群的無人機或地面車輛在網狀網絡上工作,其算法旨在避免碰撞,同時在定義的空間中作為一個組保持凝聚力。一群類似于鳥類的無人機在成群結隊、上學和覓食方面工作,而不會因冗余而影響操作必要性。
自主系統是有利的,因為它們可以降低士兵的生命風險,因此可以處理各種對人類來說骯臟、沉悶或危險的任務,如解除爆炸物、敵對條件下的 ISR、戰斗、CI/CT 操作、巡邏、快速反應、搜索和救援、惡劣地形中的后勤、長期操作、事故預防和醫療應用。
這些自主系統的開發、集成、部署和維護是有成本的,但從長遠來看,通過負責任的規劃和決策,它們在整體成本效益方面具有優勢。自主系統降低成本的方式和手段是減少人員費用,減少損失風險,優化資源及其分配,降低維護成本,提高任務效率,減少燃料消耗,操作靈活性,可擴展性和規模經濟。
這個基于人工智能的自主系統領域正在隨著新技術的發展而增長,以增強軍事能力。這些系統充當了力量倍增器,確保了速度和精度,操作的連續性,并具有更好的數據處理和分析能力。這些不斷發展的自主系統與軍事戰略相結合,將導致戰爭的新面貌,使它們成為任何現代作戰部隊不可或缺的資產,確保提高效率,降低生命風險并節省成本,但是,負責任地部署這些系統存在道德,法律和政策相關的問題,以避免任何意外和不希望的情況,因為對手也將開發導致沖突的此類系統。降低與自主系統相關的任何風險至關重要,包括負責任的決策、保持監督和故障安全檢查。
參考來源:Narendra Tripathi中校
航空航天和國防領域正在經歷一場變革,其主要驅動力是將人工智能(AI)和機器學習(ML)技術集成到為軍事設計的傳感器、武器和信息系統中。在精確度、快速決策和穩健性至關重要的環境中,人工智能/機器學習已成為一項關鍵技術,可加快對態勢的理解和決策,提高作戰效率。這些技術使軍事行動更有可能克服 "戰爭迷霧",人工智能/機器學習基于無休止和持續的信號收集,而不是人眼可見的跡象,使感官和態勢理解更加敏銳。這些部門的獨特要求,如多域作戰、極端條件下的應變能力、高風險決策、互操作性和先進的安全措施,為人工智能發揮重大影響創造了條件。
航空航天和國防領域轉向人工智能有幾個關鍵因素:
1.快速準確的決策:軍事行動在時間和空間上都具有決定性意義。人工智能系統快速處理和分析海量數據的能力對于實時做出戰略和行動決策至關重要。挖掘來自不同來源和領域的信息并快速融合這些數據,可為決策者提供可在短周期內實施的行動情報,從而在分配的時間和空間內產生預期效果。
2.彈性和可靠性: 人工智能應用程序必須在各種具有挑戰性的環境中始終如一地運行;其建議和響應必須可信、可靠,并且不會出現商業大型語言模型(LLM)所遇到的 "幻覺"。信心和信任是軍事人工智能系統中最重要的因素,能讓用戶利用這些系統發揮最大價值。安全和信心不應是設計功能,而應是軍事人工智能系統基線基礎設施的一部分。此外,還應考慮物理安全和安保問題,采用分布式系統、邊緣處理以及強大而有彈性的網絡,使人工智能隨時隨地為作戰部隊提供支持。
3.道德和受控的自動化:無論是否有制衡機制來實現人類的信任,軍事系統的高風險都要求人工智能系統納入并遵守道德標準,并允許人類在不減慢整個流程的情況下進行監督。盡管 "道德標準 "是一個不固定的術語,取決于設計者和用戶的法律、文化、宗教和社會背景,但它為人工智能操作定義了 "游戲場地 "和邊界,就像戰爭法定義了作戰人員在戰時能做什么或不能做什么一樣。
4.先進的安全措施:鑒于國防行動的敏感性,人工智能系統必須具備無與倫比的網絡安全能力,消除系統訓練和操作過程中的不利和惡意行為。人工智能系統依賴于網絡、信息、數據饋送以及通過訓練嵌入的算法。在設計或訓練過程中篡改這些基礎,或在系統運行階段對其進行惡意操作,都可能會給用戶和依賴系統帶來巨大風險和意想不到的后果。因此,從早期設計階段就應考慮安全措施,包括風險檢測、規避和應對。
研究了數十家公司的產品,觀看了演示,并在展覽和會議上聽取了官員的介紹。通過研究,掃描了市場上專為軍事行動設計或能夠支持軍事用途的人工智能系統。使用現有最好的人工智能工具進行研究,但即使這樣也需要大量的人工分析才能提供符合標準的可用信息。在第一部分中,挑選了五個在軍事行動中表現出色的人工智能系統。
為何選擇:作為行業領導者,洛克希德-馬丁公司是將人工智能廣泛應用于國防領域的典范。他們的 AI Factory 計劃展示了他們在該領域推進 AI/ML 技術的承諾。它提供了一個安全的端到端模塊化生態系統,用于訓練、部署和維持可信賴的人工智能解決方案。其功能側重于從開發到部署和維護的自動化,應用 MLOps 解決方案(機器學習運營)來驗證、解釋、保護和監控所有機器學習生命周期階段,并創建可跨項目重復使用的參考架構和組件。
影響:從作戰飛機到太空探索,洛克希德-馬丁公司通過其人工智能驅動的解決方案影響著全球國防戰略,樹立了行業標準并為未來的技術進步鋪平了道路。
為何選擇: Palantir 在大數據分析領域舉足輕重,為情報收集和作戰計劃提供人工智能平臺。他們的 AIP 平臺為綜合解決方案奠定了基礎,通過向決策者提供相關信息、利用可用傳感器增強信息以及根據對信息、紅軍和藍軍戰術、技術和程序(TTP)的理解向決策者提供相關的、可操作的響應,從而增強軍事組織的能力并使其同步化。
影響: Palantir AIP 將大型語言模型和尖端人工智能的力量結合起來,激活數據和模型,以安全、合法和合乎道德的方式從最高度敏感的環境中獲取信息。他們的系統利用信息源的可追溯性和可信推理,在復雜的國防環境中實現數據驅動決策,說明人工智能在作戰計劃和情報行動中的重要性與日俱增。
為何選擇:Anduril Industries 站在將人工智能整合到自主系統和監控技術的前沿,改變傳統的防御戰略,采用可信賴的有人無人操作能力。
影響:他們的任務自主方法是從邊境安全和態勢感知發展而來的。他們的 Lattice AI 操作系統重新定義了防御方法,引入了分布式任務自主,采用由小型人類團隊操作的眾多無人系統。核心軟件提供傳感器融合、目標識別和跟蹤、智能網絡、指揮和控制。與其他解決方案不同的是,Anduril 的方法是通過添加可操作的使能因素,將其人工智能的覆蓋范圍擴展到 Lattice 核心之外--在安全領域,這些使能因素包括 Sentry 傳感器、Anvil 和 Roadrunner 反制措施。在進攻性打擊任務中,例如在美國陸軍的 "空中發射效應 "中,該系統通過Altius長續航時間傳感器、Fury Attritable飛機和Altius 700M效應器,將Anduril的移動自主概念發揮到極致。作為一個集成解決方案,它通過擴展覆蓋范圍、能力和態勢感知,使人類能夠使用自主系統,同時使作戰人員能夠更快地做出更好的決策。
為何選擇:C3.ai 的突出之處在于其將各種人工智能工具整合到 AI-Readiness 中的戰略,這是一個安全、統一的平臺,具有可信任、彈性和可互操作的可擴展系統,可在整個生命周期內連接和管理復雜且不同的資產。
影響: 通過提高決策和運營效率,C3.ai 的解決方案優化了資源管理和維護計劃,證明了人工智能在提高國防資產的可用性和使用壽命方面的作用,同時還能保持高安全標準。為支持引入人工智能驅動的解決方案,該公司提供了一個人工智能開發工作室,將技術評估加速到數天,并在數周或數月內完成應用開發和部署,而不是數年。
為何選擇:赫爾辛公司代表了新一輪專注于專業人工智能應用的國防初創企業,他們得到歐洲主要國防企業的支持,凸顯了赫爾辛公司在人工智能國防市場的潛力和影響力。
影響:赫爾辛公司在情報分析和決策支持方面的人工智能解決方案利用先進的目標識別和人工智能賦能的電子戰技術,與其他合作伙伴的解決方案一起,必將成為雄心勃勃的未來空戰系統(FCAS)這一任務系統的人工智能支柱的一部分。赫爾辛公司專為現代戰爭量身定制,將為未來提供獨一無二的人工智能國防和航空應用。自 2022 年以來,赫爾辛公司一直活躍在烏克蘭,為前線作戰提供能力和技術。
正如這些領先公司所展示的那樣,航空航天和國防領域正在走向以人工智能為中心的未來。市場格局多種多樣,發展迅速。每家公司都以獨特的方式塑造人工智能的市場、技術和未來,凸顯了人工智能對全球國防和航空航天戰略的變革性影響。這一趨勢增強了當前的能力,為軍事和太空行動開辟了新的可能性,標志著國防技術進入了一個新時代。
參考來源:DEFENSE UPDATE
本文討論了在軍事領域決策過程中使用人工智能(AI)的好處和注意事項。文章側重于三個主要方面:提供更快、更準確信息的能力,掌握情況和減少人為錯誤,以及在使用這種技術時必須考慮的技術和倫理因素。人工智能可以大大改善軍事領域的決策;然而,重要的是要反思與使用人工智能相關的倫理和技術影響。
關鍵詞 人工智能、情境領域、減少人為錯誤、合成環境、顛覆性技術、知情決策。
人工智能(AI)已成為包括軍事在內的各個領域的重要工具。人工智能的定義是開發計算機系統,使其能夠執行通常需要人類典型的理性智能才能完成的任務,包括識別語音、做出決策和解決問題。在軍事領域,人工智能可以通過實時處理有價值的信息,幫助指揮官更快、更準確地做出決策。然而,人工智能在軍事領域的應用也帶來了倫理和技術方面的挑戰,例如在隱私和數據安全等方面對人類的影響。必須了解人工智能在軍事領域的優勢和挑戰,才能有效、負責任地實施人工智能。從這個意義上說,人工智能的應用可以優化指揮官在戰場上及時做出明智決策的能力。此外,對大量信息的即時處理使人們有可能對全景有更全面的了解,這為預測突然變化和可能出現的風險提供了依據,而這些都需要掌握態勢。這也有助于減少個人失誤,擺脫每個人的局限性。不過,有必要考慮在對這一顛覆性技術進行管理時所涉及的倫理問題。
在軍事領域使用人工智能并非新概念。然而,在很短的時間內,它已成為一種日益重要和有用的工具。它能夠高速、準確地處理大量數據,并分析模式和趨勢,提供重要信息,幫助指揮員在發生危機時執行措施,而危機需要快速、有效的反應,這在完成任務可能受到影響的情況下非常有用。
此外,人工智能還能識別人類可能忽略的模式和趨勢,從而更好地進行數據分析。這樣就能更全面、更清晰地了解任何情況,使軍方能夠做出更明智的決策。人工智能還能將數據收集和分析等乏味的重復性任務自動化,從而騰出時間實施更相關的行動。
從這個意義上說,人工智能提供信息的速度和質量對軍事決策過程有著積極的影響。指揮官可以擁有一種工具,使他們在行動發展過程中更容易選擇并永久保持認知優勢。所謂 "認知優勢",是指在戰場上以最有效的方式利用信息和知識的能力。這意味著,人工智能可用于規劃過程、開展行動,甚至在任務完成后提供反饋并鞏固認知優勢。
同樣,在軍事行動規劃中,人工智能可以分析數據、生成情報,并提供需要優先處理的局勢變化信息以及可用資源和其他重要因素。在戰爭實施過程中,人工智能可以提供有關設備變化、通信流量和其他關鍵因素的實時數據。這一優勢將使指揮官有能力在不斷變化的情況下做出快速有效的決策,并確保其部署的資產始終處于有利地位。例如,某國開發了一套自主車輛系統,用于收集戰場信息,其目的是對信息進行處理,以便為決策提供準確的要素;它甚至可以在結果評估方面提供幫助。
據西點軍校現代戰爭研究所稱,人工智能的多任務特性使其可以通過與不同決策層的偵察、監視和情報集成手段的實時連接,用于收集和處理信息。人工智能能夠處理大量數據并從中學習,這意味著指揮官可以提高對態勢的掌控能力,減少危急情況下的人為錯誤。
一方面,人工智能可以實時處理信息,全面了解戰場態勢。此外,人工智能還能分析歷史數據和趨勢,在更短的時間內預測局勢并做出更準確的決策。同樣,如果與能夠以自身標準開展行動的自主手段銜接,就可以省去暫停行動的必要,從而有可能對對手保持持續的壓力。例如,人工智能可以分析敵人的行為模式并預測未來的動向,從而用于制定不確定性余地更小、細節更精確的應急計劃。
另一方面,在軍事決策過程中應用人工智能還能減少人為錯誤。從這個意義上說,由于軍事力量的應用所隱含的后果,指揮官的決策能力面臨著需要高度重視的情況。例如,法律方面的考慮,如尊重人權或保護自己的部隊,被證明是涉及道德的因素,最終會對指揮官產生壓力,并可能導致因疲勞、恐懼或缺乏經驗而做出錯誤的決定。在這種情況下,人工智能通過提供準確可靠的信息,有助于最大限度地減少這些錯誤。
此外,人工智能還可用于模擬合成環境中的情況,讓軍事人員在安全可控的環境中練習、積累經驗并提高技能。因此,美國陸軍正在利用人工智能的優勢培訓步兵單元指揮官,根據戰術形勢的變化--面對模擬對手--創建可變場景,對手的反饋和快速決策能力豐富了培訓經驗。這樣就能加強美國陸軍培訓的步兵指揮官的決策和掌握情況的能力。總之,在軍事決策過程中應用人工智能,可以讓負責任的指揮官提高對態勢的掌握能力,減少人為錯誤。
人工智能這一技術正越來越多地應用于軍事領域,目的是提高軍事行動的效力和效率。然而,人工智能的使用也帶來了一些重要的技術和倫理問題,必須認真加以解決。從這個意義上說,不應無視這一現實,也不應無視在使用這些技術時因其顛覆性而涉及的考慮因素。
從技術角度看,在軍事決策過程中使用人工智能有可能提供更快、更準確的信息,提高對態勢的認識,并降低人為錯誤的風險。然而,人工智能的使用也帶來了必須妥善解決的重大挑戰。首先是人工智能所使用數據的質量問題,人工智能的正常運行依賴于準確、高質量的信息。如果不具備這些特征,人工智能除了在訓練中出現錯誤外,還可能做出不正確或不恰當的決定。因此,必須掌握準確的最新數據,以確保人工智能的效率。其次,必須有足夠的基礎設施供其使用。換句話說,人工智能需要大功率的計算基礎設施和可靠的通信網絡才能良好運行。因此,要想在軍事決策過程中充分發揮人工智能的潛力,就必須對基礎設施進行投資。
另一方面,從道德角度來看,使用人工智能會引發重要的思考,例如它對受武裝沖突影響的戰斗人員、非戰斗人員和平民的生活會產生什么影響。因此,必須制定明確和透明的政策,規范在軍事情況下使用人工智能。在這方面,為確保在軍事領域有效使用人工智能,有必要明確以下幾個方面: 首先,必須制定明確透明的人工智能使用政策,并確保所有專家、人工智能操作員都接受過使用、監督和控制該技術的培訓。其次,必須確保提供有效使用人工智能所需的計算和通信基礎設施。這包括購置適當的設備和技術,以及建立安全可靠的通信網絡。因此,要充分利用人工智能在軍事決策中的潛力,就必須對基礎設施進行投資。
人工智能可提高收集信息的速度和準確性,并增強及時做出明智決策的能力,從而提高軍事行動的效力和效率。此外,使用人工智能還有助于減少人員傷亡和附帶損害,從而保護平民和限制軍事行動對非戰斗人員的負面影響。為了充分發揮人工智能在軍事領域的潛力,必須制定清晰透明的使用政策,優先培訓軍事人員使用人工智能,并與學術研究機構簽訂合作交流協議。這將有助于最大限度地降低在軍事行動中使用人工智能的風險,最大限度地提高其效益。在軍事領域的決策過程中使用人工智能的經驗,主要參與者是美國陸軍等,由于不斷競爭以加強其在世界上的存在,他們一直在加速發展這項技術。可以從中汲取重要的經驗教訓,以發展自己的人工智能,并闡明國防方面的需求,特別是在軍事決策過程中。總之,在決策過程中適當實施人工智能,可受益匪淺。這可以通過提供更快、更準確信息的自主系統來實現;也可以通過在模擬器中使用合成環境對指揮官進行決策培訓來實現;最后,還可以通過減少處理過程中的人為錯誤來實現。
參考來源:CEEEP
大數據與人工智能(AI)的結合實現了準確預測和明智決策,為工業和研究帶來了革命性的變化。這些進步也在軍事領域找到了自己的應用位置,一些舉措整合來自不同領域的數據源和傳感器,提供共享的態勢感知。在城市軍事行動中,及時了解具體情況的信息對于實現精確和成功至關重要。數據融合將來自不同來源的信息結合在一起,對實現這一目標至關重要。此外,民用數據可提供關鍵的背景信息,并對任務規劃產生重大影響。本文提出了軍事數據空間(MDS)概念,探討大數據如何通過結合民用和軍用數據來支持軍事決策。文章介紹了使用案例,強調了數據融合和圖像認證在提高數據質量和可信度方面的優勢。此外,還討論了數據安全、隱私、完整性、獲取、融合、聯網和利用人工智能方法等方面的挑戰,同時強調了構建下一代軍事應用的機遇。
大數據的興起改變了企業存儲、管理和分析海量數據的方式。此外,大型數據集的可用性和更強大硬件的發展也為人工智能(AI)時代的到來鋪平了道路。盡管存在局限性,但這些課題在軍事領域也找到了適用性。其中一個例子是美軍使用的多域作戰(MDO),后來擴展為聯合全域指揮與控制(JADC2),以及 "共同作戰圖景"(COP)概念,這些概念整合了多個領域(陸地、海洋、空中、太空和網絡空間)的各種數據源和傳感器,使決策變得更快、更明智,提供了從戰術到戰略的各級組織的共享態勢感知。此外,北約社區已通過北約核心數據框架(NCDF)討論并測試了數據湖概念,以便在適當的時間/形式與聯盟伙伴共享可靠的跨域信息。
利用先進的算法和計算能力,人工智能可以處理龐大的數據集,揭示人類通常無法察覺的復雜模式。這使國防行動能夠增強實戰經驗、促進任務執行、做出數據驅動的決策、協調來自不同來源的數據,并加強應對威脅和災難的準備。通過整理來自不同來源的數據,指揮與控制(C2)部門可以深入了解城市景觀,并通過數據融合技術[3]、[4]促進態勢感知決策[1]、[2]。現代城市部署了傳感器網絡,利用大數據支持城市軍事戰略。此外,社交媒體平臺是寶貴的文本、圖像和視頻來源,豐富了態勢感知,但也帶來了數據完整性等挑戰。在 "非戰爭 "行動中,包括打擊腐敗政府、毒品販運和人道主義任務,大數據、數據融合、數據完整性和人工智能在任務成功中的重要作用在當代全球格局中變得顯而易見。
本文深入探討了利用大數據促進軍事決策以及相關挑戰。文章以簡明易讀的方式涵蓋了該領域相對欠缺探索的各個方面。在此背景下,研究介紹了軍事數據空間(MDS)的概念,這是一種將軍內數據(IMD)和軍外數據(EMD)結合在一起的新方法,旨在引發討論并開發軍事解決方案。然后,它通過以數據融合和圖像完整性機制為重點的使用案例來說明大數據的好處。最后,它討論了使用大數據的挑戰和機遇,集中在支持戰略性軍事決策必須考慮的四個主要方面:i) 數據融合;ii) 安全/隱私和完整性;iii) 人工智能;以及 iv) 網絡作為訪問大數據的手段。
從網絡視角討論數據傳播問題具有現實意義,文獻中也有廣泛論述。因此,本研究旨在引發對大數據觀點的討論,以及利用大數據造福軍事系統的可能性。此外,我們還強調了應對整合 IMD 和 EMD 相關挑戰的重要性。這種整合對于建立有凝聚力的大數據,最終提高軍事決策能力至關重要。總之,本文的貢獻如下:
文章結構如下。第二節介紹了 MDS 的概念。第三節回顧了有關軍事和民用場景中大數據的最新文獻。第四節介紹兩個使用案例,說明大數據如何支持軍事決策。第五節討論了軍事數據領域的挑戰和機遇。最后,第六節總結了本研究討論的主要方面,為文章畫上了句號。
軍事數據空間(MDS)的概念是根據 [5] 中討論的觀點提出的。它提供了一個以數據為驅動的軍事場景視角,有助于根據不同的數據源做出決策。MDS 包括兩個主要類別: 軍內數據(IMD)和軍外數據(EMD),如圖 1 所示。目前大多數軍事文獻都只針對 IMD 提出和評估系統(如中間件、協議)。然而,隨著信息和通信技術(ICT)的迅猛發展,民用系統已成為不可忽視的數據和基礎設施(網絡)的重要來源。因此,考慮到數據隱私/安全、完整性、獲取、融合、聯網和利用人工智能等挑戰,MDS 旨在支持關于 EMD 如何幫助軍事決策的討論。
圖1 軍事數據空間。
IMD 與軍方提供和消費的數據相對應,主要分為兩層:帶有真實/虛擬傳感器(來自空間/航空/地面/航海單元)的基礎設施和信息層,包括作戰、情報和后勤數據。
基礎設施包括傳感器(如雷達、聲納、照相機)和其他電子系統收集的數據,可探測和跟蹤空中、陸地或水中的物體;車輛傳感器可提供軍事單元和周圍的狀態;可穿戴/智能和物聯網(IoT)設備可通過 GPS 定位、地圖、健康測量、實時照相機(高分辨率、紅外線)等為戰場上的步兵提供支持。這些數據可用于監測和識別潛在威脅、協助鎖定敵軍目標以及監測步兵狀況。
除了來自真實/虛擬傳感器的原始數據外,IMD 還包括信息層,該層融合了從作戰到情報等各種來源收集的數據,以創建一個更可靠、更廣闊的作戰視圖,這也是 JADC2 和 COP 系統的目標。情報信息可幫助軍隊了解敵軍的能力和意圖,識別潛在威脅并制定作戰計劃。后勤數據提供有關物資、裝備和人員的信息,如運輸時間表、庫存水平和維護記錄。這些數據對于確保軍隊擁有有效執行任務的資源至關重要。
軍外數據是由真實/虛擬傳感器單獨或融合提供的數據子集,可描述軍事行動周圍的環境。因此,可定義用于支持軍事行動的兩個主要數據層:基礎設施(如交通系統、天氣、當局)和信息(如社交媒體、新聞、政府報告)。這些層產生了大量高度可變的信息,從用戶對實時事件(如事故、腐敗和恐怖主義)的感受和照片,到城市環境中的交通/天氣狀況和人們/駕駛員的行為。
信息和通信技術在城市地區的發展催生了智能城市的出現,智能城市通過增強流動性、安全性和健康解決方案來應對城市化帶來的挑戰。智能城市基礎設施包含傳感器,可捕捉有關車輛、交通、天氣和駕駛員行為的寶貴數據。傳感器和物聯網設備的激增也產生了大量數據,這使得利用云通信技術和人工智能應用開發智能系統成為可能。在大數據的推動下,數據融合應運而生,它整合了來自多個提供商的數據,以提高質量和覆蓋范圍,并減少海量數據流量。融合來自交通、天氣、攝像頭、醫療系統等的數據,不僅有可能支持民用應用,還能通過提供上下文數據支持戰略性軍事行動。在傳感器基礎設施有限的情況下,來自社交媒體和政府報告等媒體來源的數據可幫助了解當地行為,并識別影響犯罪、腐敗和毒品販運的因素。
社交媒體數據對于支持與緊急事件和災難相關的信息非常有價值,可通過捕捉獨特信息(如需要救援的群體的位置或隱藏人員的存在)來補充其他傳感器數據。建筑物上的固定傳感器和監控攝像頭可幫助進行人員跟蹤,以準確識別位置。社交媒體數據與其他數據源相結合,有助于敵情偵查和戰術規劃。與交通相關的傳感器數據,特別是交通監控攝像頭,在應急響應和軍事后勤方面發揮著重要作用。它可以檢測事故造成的擁堵和堵塞,從而改進軍事行動期間的路線規劃和交通管理。整合所有收集到的信息可增強態勢感知,促進城市環境中行動的有效規劃和管理。
針對近期發生的事件,如俄羅斯戰爭以及美國和巴西等國的反民主極端分子所帶來的挑戰,已經出現了多項舉措。其中一個例子是 ACLED(武裝沖突地點和事件數據)項目,該項目提供有關政治暴力和抗議事件的實時全球數據。另一個值得一提的項目是 DATTALION,這是一個廣泛的開源照片和視頻片段數據庫,記錄了俄羅斯對烏克蘭的戰爭。該數據庫的主要目的是反擊俄羅斯政府散布的錯誤信息。聯合國開發計劃署(UNDP)利用機器學習(ML)算法和大數據來檢測烏克蘭東部受損的基礎設施。語義損壞檢測器 (//tinyurl.com/semdam) 利用衛星圖像和地面照片對算法進行訓練,以識別建筑物、道路和橋梁的潛在損壞,協助地方當局和人道主義組織確定行動的優先次序。這些舉措極大地促進了 MDS,特別是 EMD,為分析和研究提供了寶貴的資源。
本節探討大數據在軍事領域的應用,重點從數據內(IMD)和數據外(EMD)兩個角度概述大數據在軍事行動中的重要意義,并探索利用其潛力的最新解決方案。
大數據在軍事領域的一些挑戰已在文獻中提出,并成為北約社區討論的主題,如作戰安全性、漏洞加固和數據可靠性[1]、[2]、[6],以及北約 IST160 和 IST-173。納入與外界幾乎沒有聯系的自主隔離(如 EMD)可能會限制大數據的自由流動,這就要求在保持系統自主性和保護性的同時,以創造性的方式利用大數據。在這一方向上,COP 和 JADC2 引導研究人員和行業使用和融合來自不同軍事實體的數據,以支持戰略決策。
Kun 等人[1]提出了在軍工企業構建大數據平臺、建立多級數據通道、實現全面數據管理和控制的詳細技術方案。該平臺有利于數據的收集、組織、處理和分析,將數據轉化為知識,以加強決策/服務支持、創新、質量控制和風險管理。Xu 等人[6]強調了數據科學在當代戰爭中實現信息優勢的重要性。他們的系統性綜述顯示,社會科學文獻對數據科學風險給予了極大關注,這可能會影響政治和軍事決策者。然而,與戰術層面相比,科學文獻缺乏對作戰和戰略層面風險的關注,這表明存在研究空白。這一差距可能是由于 IMD 與 EMD 之間缺乏聯系造成的,而 EMD 可以支持行動和戰略決策。
多傳感器數據融合(MSDF)方法是在戰術場景中提供快速高效的目標探測、跟蹤和威脅評估的一個實例,如文獻[4]所示。數據融合的另一個應用領域是基于位置的社交媒體(LBSM),它可以增強各個領域的知識,包括交通特征描述和事故檢測[7]。利用 LBSM 系統可以獲得更詳細的交通數據,有利于軍事后勤工作。在特定的軍事環境中,可以利用 LBSM 系統的潛力來提高數據可用性,并實現情境感知操作。
數據完整性對于維護對 MDS 的信任至關重要[9]。被篡改的數據會產生嚴重后果,影響民事和軍事決策過程,破壞對數據源的信心。社交媒體平臺上錯誤信息的泛濫就是這一挑戰的例證,這些錯誤信息往往被利用來施加政治影響,烏克蘭正在發生的沖突就是一例。為應對此類問題,Twitter 等平臺修訂了其政策,標記了許多與俄羅斯國家附屬媒體相關的推文,并檢測了數十億條與沖突相關的實時推文印象[10]。
與此同時,圖像認證的出現解決了人們對圖像完整性和來源驗證的擔憂。然而,包括人工智能軟件在內的先進圖像處理工具的興起使圖像驗證變得越來越棘手。雖然圖像驗證引入了水印、數字簽名和感知散列(pHash)等多種技術[11],但每種技術都有其優勢和局限性。例如,水印可提供真實性和所有權保護,但可能會影響圖像質量,而且容易受到高級處理技術的影響。相比之下,pHash 可以靈活地進行圖像操作,并對內容變化敏感,因此特別適合在社交媒體平臺上使用。在數據完整性和圖像認證的背景下考慮這些挑戰和解決方案至關重要。
首先,大數據的時空融合是為了支持軍事決策。由于缺乏所討論的可用 IMD,多數據融合(MDF)框架[12]被實例化,用于收集、準備和處理 EMD,并將其融合以提供豐富的信息。為了證明時空數據的豐富性,MDF 利用基于云的系統共享數據的公共可用性獲取了交通系統數據。不過,該框架可擴展到其他各種數據類型。其目標是提高數據質量、改進 C2 系統和軍事后勤,并支持城市地區的 COP/JADC2,從而創造出將融合 EMD 與來自不同領域的可用 IMD 結合使用的新方法。下文圖 2 介紹了 MDF 的主要功能。此外,還通過分析數值結果討論了融合大數據的好處。
對于數據采集,圖 2 (1)配置了一組參數(如區域、請求頻率)和數據源,MDF 為此收集各種格式的數據,并將其存儲在文件中。在準備階段(2),通過將不同的地物名稱和類型轉換為統一的表示方法,對輸入數據集進行標準化。這包括各種數據映射,以生成統一的數據類型,例如將描述性映射為數值或降低數據粒度。此外,還啟動地圖匹配,將所有地理定位數據(可能具有不同的精確度)融合到同一個路網中。MDF 對所有收集到的數據進行預處理,并從收集到的區域獲取 Shapefile (SHP)。請注意,根據應用目標和可用數據類型,框架可能會應用不同的特征提取方法,如自然語言處理(NLP)(情感分析、關鍵詞提取、詞法化、詞干化和自動摘要)或圖像處理(圖像分割、邊緣檢測和對象檢測),以從非結構化數據類型中提取信息。在使用案例中,我們沒有使用 NLP 算法,因為數據是無文本圖像和基于交通的數據。不過,建議的數據融合框架具有多功能性,可以處理各種數據類型,包括可以應用 NLP 技術的文本數據。
圖2 數據融合框架工作流程。
第三階段實現時間/空間數據融合和數據導出。為確保數據完整性,需要事先過濾非信任信息或有偏見的信息,例如,根據信息在不同數據源或圖像認證機制中的出現情況,使用驗證信息的方法,如第四節B部分所述。時間數據融合是通過對任意時間窗口(如每分鐘、每小時、每天)內的數據進行分組來實現的。為了進行空間融合,MDF 利用地圖匹配,根據底層道路網絡在規定的精確度下對 GPS 點進行對齊。由于不同數據源的 GPS 報告精度各不相同,因此必須這樣做,才能將所有地理定位數據映射到相同的道路網絡中。
最后,在圖 2 (4)中,豐富的數據以不同的格式輸出,為軍事和民用領域提供了多種可能性。MDF 的輸出通過創建不同類型的統計數據和可視化效果來支持時空分析,從不同的空間和時間方面描述可用信息的特征。
表I 按數據來源分列的道路覆蓋情況。
之前的工作[11]介紹了一種利用 Twitter 和 Facebook 來確保圖像完整性的圖像認證系統。該系統采用卷積神經網絡(CNN)和全連接層(FCC)進行特征提取,采用位置敏感散列(LSH)進行散列構建,并采用對比度損失最大化原始圖像和篡改圖像之間的差異。該模型的輸出是每個圖像 1024 位的固定長度向量表示。
為解決在城市軍事行動和民用系統中保持圖像完整性的重要性,提出了圖像事實檢查器(IFC),如圖 3 所示。它能檢測虛假圖像,確保數據的可信度,并作為當局主導的認證系統,打擊錯誤信息。系統會生成帶有徽標或圖標的驗證版照片,表明其已通過 IFC 系統驗證。此外,IFC 還提供了圖像的感知散列(pHash)字符串表示,可將其納入描述或在其他網站上共享。數據融合系統是 IFC 的一個可能的終端用戶,它可以在應用時空融合和生成豐富數據之前對抓取的圖片進行驗證。
圖3 Image-Fact-Checker (IFC)。
建立一個能提供即時真實信息的自動化系統是一個相對較新的概念,因此通過比較來評估其有效性具有挑戰性。然而,由于創建令人信服的偽造圖像的人工智能生成模型的興起,實施圖像認證系統現在變得至關重要。添加這一系統作為驗證層有助于防止或減少虛假信息的傳播,尤其是考慮到不斷發展的互聯網法規會對缺乏反虛假信息措施的平臺進行處罰。一種有效的方法是將 IFC 系統與政府機構連接起來。IFC 方法具有通用性和可擴展性,可提高個人的意識和信任度。
圖 4(左)是通過 DATTALION 從普通社交媒體用戶那里收集到的兩張未經驗證的圖片。這些圖片只是更大數據集中的一小部分。用戶通常不愿意相信這些來源,因此有效利用這些來源具有挑戰性。然而,當這些圖像經過 IFC 機制處理后,其可靠性就會提高,因為任何進一步的篡改都很容易被檢測出來。如圖 4(右圖)所示,應用 IFC 后,每張圖片都會收到 pHash 和相關信息,如圖片描述、提取的特征、位置、事件日期、抓取日期、發布者 ID。這些經過處理的圖像將存儲在 IFC 數據庫中,供今后查詢。該數據庫有多種用途:重復檢測、完整性驗證以及滿足特定最終用戶的要求。
圖4 使用IFC提取圖像細節。
數據融合的第一個挑戰是尋找和獲取軍事和民用領域的可用數據。出于隱私/安全考慮,信息可能無法廣泛獲取或獲取途徑有限。在軍事領域(IMD),數據受到更多限制,這為探索可用的民用數據(EMD)以支持戰略性信息決策提供了機會。第二個值得注意的挑戰是融合多種數據源,這些數據源可能具有不同的結構(結構化、半結構化和非結構化數據)、標準、數據類型(如文本、圖像、視頻)、測量單元、粒度和時空覆蓋范圍。因此,需要深入了解如何準備和處理不同的數據集,并將其融合為一個數據集。
處理社交媒體中的圖像和文本需要進一步的程序,如特征提取方法(如 NLP 和圖像處理),以提取可用信息。盡管數據融合面臨諸多挑戰,但將從不同角度(如指揮部、用戶、記者、政府、傳感器)描述同一空間和時間的不同數據源結合起來的好處,可以加強軍事行動的規劃和戰略階段,為 COP 和 JADC2 系統提供支持。
數據安全與隱私: 保護敏感的軍事信息對國家安全至關重要。需要強大的加密、安全的數據存儲和訪問控制來降低風險。建議采用的技術包括公鑰基礎設施(PKI)安全、受保護內核、數據加密、防火墻和入侵檢測。然而,如何在數據共享、有利于信息融合和安全/隱私措施之間取得平衡,對軍方來說仍是一項具有挑戰性的任務。
數據完整性: 被操縱的數據會給民用和軍用決策帶來風險,并降低對數據提供者的信任度。在生成內容的人工智能模型不斷進步的幫助下,篡改圖像迅速傳播,參與度不斷提高,這凸顯了對智能綜合解決方案的需求。通過社交媒體分享的圖片能夠快速傳達復雜的想法,從而為救援行動提供支持,使人們能夠立即采取行動,如在城市發生事故/災難時改變交通路線。圖片還能喚起情感聯系,增強讀者對新聞事件的理解。然而,烏克蘭戰爭等危機擴大了錯誤信息的傳播,這就需要 snopes.com 和 norc.org 等人工事實核查機構的參與,以打擊錯誤信息。然而,在戰爭期間或為打擊腐敗政府而進行基于人工的實時核查可能會耗費大量時間,這就為設計自動系統來驗證圖像和處理虛假信息創造了機會。
雖然這項工作的主要重點在于數據視角,以及確保使用來自不同來源的可信數據來支持軍事行動的相關性,但同樣重要的是要認識到網絡在有效提供數據和服務方面的重要性。在以網絡為中心的軍事行動中,利用高頻、甚高頻、超高頻、衛星通信、Wi-Fi 和 LTE 4-5G 等各種技術進行無線通信至關重要。有些技術擅長長距離覆蓋,但帶寬有限、延遲高,而且容易受到干擾。另一些則以可靠性為先,覆蓋范圍較短,帶寬較大,延遲較低。
以信息為中心的網絡(ICN)和軟件定義網絡(SDN)等網絡范例對于優化數據傳播和網絡協調至關重要[13],尤其是在網絡資源有限的情況下。在軍事網絡中,尤其是在戰術邊緣,數據傳播過程中會出現資源有限和安全問題等挑戰。為解決這些問題,軍方可能會探索包括民用網絡在內的各種基礎設施,以獲取和融合非軍事數據。以歐洲 5G COMPAD 聯盟為例,目前正在考慮采用 5G 技術。然而,由于硬件通信系統成本高昂、帶寬和互操作性有限,因此具有挑戰性。這就需要定制參考架構來滿足軍事通信需求。
在最近的烏克蘭-俄羅斯沖突中,俄羅斯對烏克蘭基礎設施的攻擊導致互聯網中斷,暴露了通信網絡的脆弱性。SpaceX 的 Starlink 衛星互聯網星座提供了一種解決方案,證明了在戰時利用民用網絡基礎設施的價值。盡管該技術有望提高互聯網在數據和緊急通信方面的可靠性,但它在網絡安全、覆蓋范圍、可靠性和成本效益方面仍面臨挑戰。
由于隱私、安全以及軍事機構為防止濫用和限制 IMD 的可用性而施加的限制,為人工智能研究訪問軍方擁有的大數據帶來了挑戰。此外,人工智能功能可能會受到對抗性攻擊的影響,對抗性攻擊會通過改變造成錯誤分類來欺騙人工智能模型。快速梯度符號法(FGSM)和語義攻擊等技術分別有助于識別和減輕計算機視覺和 NLP 中的此類攻擊。Yuan等人[14]對攻擊、對策和基于應用的分類標準進行了全面評述。
要檢測對抗性攻擊,一種有效的方法是使用具有與主人工智能模型不同特征的輔助人工智能模型。這一想法源于早期的衛星通信。當時,人們使用電報等輔助系統來防止對衛星通信的中間人攻擊或干擾攻擊。由于帶寬有限,輔助系統只能傳輸與完整衛星數據相對應的摘要數據,用于偵測攻擊和應急通信。同樣,在人工智能中防范對抗性攻擊時,傳統的 ML 可以作為輔助系統,產生與主要 CNN 方法一致的結果。對抗性攻擊依賴于計算機視覺深度學習模型中的梯度技術,而傳統的 ML 方法則使用不同的方法,這些方法對這些攻擊操作大多具有免疫力。
在軍事領域使用人工智能的另一個問題是需要共享敏感數據來訓練模型。在這方面,聯邦學習(FL)作為一種訓練 ML 模型的技術已經出現,在這種技術中,數據不會暴露,從而確保了數據的安全性和隱私性[15]。雖然它不能被視為對抗惡意攻擊的防御技術,但這種方法隱藏了敏感數據和模型或參數的一部分。這種技術對于建立在人工智能基礎上的新興軍事應用非常有價值。
本文探討了大數據在軍事領域的應用。研究了與整合不同數據源、確保數據安全、隱私和完整性以及聯網和利用人工智能相關的機遇和挑戰。文章引入了 MDS 概念,以豐富和引導討論,強調納入民用數據的潛力,以提高軍事行動戰略決策所需的信息質量和數量。此外,文章還包括兩個實際使用案例,說明了數據融合的好處以及實施圖像認證機制以保持數據完整性的重要性。這些發現凸顯了大數據在軍事領域的重要意義,并強調了在該領域開展進一步研究和探索的必要性。
人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。
人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。
電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。
將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。
在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。
此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。
人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。
不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。
最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。
最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。