亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

前美國防部長馬克·埃斯珀(Mark Esper)曾經說過:“歷史告訴我們,那些率先利用新一代技術的人往往在未來幾年的戰場上擁有決定性的優勢”。

人工智能與機器學習技術對戰場的影響

人工智能和機器學習將在塑造現代戰場方面發揮關鍵作用。這些技術增強了態勢感知能力,優化了決策,并提供了競爭優勢。

從用于偵察的自主無人機到用于供應鏈管理的預測分析,它們的影響是深遠的。在烏克蘭的行動凸顯了這些技術的應用:由克里斯·希爾博士領導的陸軍物資司令部分析小組利用作戰數據在需要時協助需求規劃,同時無縫預測和協調需求。快速處理此類大量數據的能力允許實時威脅檢測和響應,從而挽救生命和資源。

此外,人工智能有助于開發復雜的網絡防御系統,并支持創造更智能、適應性更強的武器。簡而言之,人工智能和機器學習正在通過提高效率、準確性和整體有效性來徹底改變戰爭。隨著我們繼續開展活動和運營,并在全球范圍內進行投資,情況將保持不變。

總的來說,指揮官和領導者必須信任這項技術,才能在聯合全域作戰中證明其有效。當務之急是,所有梯隊的領導者都必須考慮如何制定和實施與家鄉站的數據訓練策略——以及戰斗訓練中心的參與——以建立對技術的信心,以便領導者能夠以信任的速度運作。

在不斷變化的戰爭環境中,技術進步不斷塑造著武裝部隊的作戰方式。從南北戰爭期間的加特林機槍到二戰期間的DUKW兩棲車輛和M-3半履帶運兵車,技術一直影響著我們的戰斗方式。

在這些進步中,人工智能和機器學習已成為游戲規則的改變者,無疑將徹底改變現代戰場。它們的整合在軍事行動的各個方面,從情報收集到決策等方面都帶來了前所未有的改進。

量子計算和機器學習可以在幾秒鐘內做出比傳統工作人員在軍事決策過程中更多的行動方案,這允許決策速度,這將給我們帶來決定性的優勢。

隨著戰爭性質的變化,我們正處于一個戰略轉折點,正如現已退休的馬克·米利將軍在 2023 年 7 月發表的“聯合部隊季刊”文章《戰略拐點:戰爭性質中最具歷史意義和最根本的變化正在發生——而未來籠罩在迷霧和不確定性中》中所闡明的那樣。

“我們必須努力比敵人少犯錯,”他說。這要求我們的聯合特遣部隊在聯合作戰概念的指導下進行根本性轉變。隨著我們過渡到一個新的戰爭時代,如果我們要贏得“比敵人少犯錯”的戰斗,我們必須確保聯合部隊被納入人工智能和機器學習的整合中。

同時,全面了解戰場對于軍事成功至關重要,人工智能和機器學習將使軍隊能夠利用大數據和實時信息的力量來增強態勢感知能力。配備人工智能算法的自主無人機可以以無與倫比的效率執行偵察任務,捕獲有關敵人動向、地形狀況和潛在威脅的數據。這些信息可以快速處理,使指揮官能夠在使用傳統方法所需時間的一小部分內做出明智的決定。

這種增強的態勢感知能力不僅可以最大限度地降低士兵的風險,還可以對新出現的威脅做出積極反應。簡而言之,訪問可以快速處理和分析的數據,為指揮官和作戰人員的實時決策提供信息,這將改變戰場上的游戲規則。

利用人工智能和機器學習等技術將塑造我們如何在未來的戰斗中采用這一概念,并決定我們如何培訓和發展梯隊領導者,以便在競爭、危機或沖突中利用這項革命性技術。

在“軍事評論”最近的一篇文章中,堪薩斯州萊文沃思堡陸軍聯合武器中心司令米爾福德·比格爾中將談到了我們必須如何通過減少對材料的依賴和提高對信息維度的利用來優化指揮所。

人工智能對提高決策速度的至關性

在混亂的戰爭中,瞬間的決策可以決定戰斗的結果。

正如在第二次世界大戰期間的中途島海戰中所看到的那樣,在那場海戰中,決策速度決定了成敗。人工智能和機器學習算法旨在處理大量數據并識別人類可能遺漏的模式。這些工具將改變組織如何更快地做出更好的決策。

將那些經常在“數據脫節”環境中作戰的戰場最邊緣的指揮官提升到行動指揮官和上層之間費力的信息流的犧牲品。

這種能力有助于軍事領導人做出更明智的決策,從選擇最佳戰略到根據實時情報評估最佳行動方案。從歷史數據中得出的預測分析還可以幫助預測敵人的動向并識別其防御中的潛在弱點。這是對指揮官現在利用的人類情報和信號情報流的一大補充。

人工智能對軍事行動方法的影響

最后,利用這項技術可以采取更有計劃、更有效的軍事行動方法,從而最大限度地減少傷亡并提高任務成功率。

戰略競爭對手正在部署能力,通過所有領域的多層對峙來對抗對手,這將要求在太空、網絡、空中、海上和陸地上擊敗多層對峙。實時檢測和響應威脅的能力是現代戰爭的重要組成部分。

人工智能驅動的系統可以同時監控多個數據源,從衛星圖像到截獲的通信。通過實時分析這些數據,算法可以識別異常和潛在威脅,從而立即向軍事人員發出警報。這種積極主動的方法能夠實現快速響應和反擊,防止對手占據上風。

無論是對關鍵基礎設施的網絡攻擊還是敵軍的移動,人工智能驅動的威脅檢測系統在維護軍事行動的安全性和完整性方面都具有顯著優勢。

后勤和供應鏈管理是任何軍事行動的命脈。在全球綜合后勤環境中,有太多相互作用的變量,維持者無法有效監控。

如今,人員只能通過各種數據流對車隊和供應商品的歷史數據進行監控。正如 Lone Star Analysis 的 John Price 在 2021 年 8 月發表在“軍事嵌入式系統”上的一篇文章中所寫的那樣,“計算機系統可以提供持續的評估,并且有足夠的機器智能,預測就會變得強大。

人工智能和機器學習通過預測需求模式、識別供應短缺和簡化分銷路線來優化這些流程。這包括人工智能驅動的基于車輛狀態的維護,該維護監控車輛的各個方面,從進氣到排氣以及其中的所有點。

因此,我們將范式完全從工廠轉移到了工廠,現在需求從散兵坑傳到了工廠。基于車輛狀態的維護利用預測性和規范性分析,同時提供持續診斷以及提供問題預測和解決方案處方,從而使人員能夠專注于進行特定調整,以優化軍用車隊的運營可用性。

這不僅確保了部隊擁有必要的資源,而且還最大限度地減少了浪費并降低了成本。通過自動化重復性任務和優化路線,武裝部隊可以更有效地分配資源,并在速度和效率方面保持競爭優勢。這種由人工智能和機器學習實現的精確維持確保響應符合需要,或者從散兵坑移動到工廠,而不是從工廠轉移到散兵坑。

同時,現代戰爭超越了傳統戰場,也包括了網絡領域。人工智能和機器學習在制定針對網絡威脅的自適應防御策略方面發揮著至關重要的作用。

美國防部的OODA - 觀察,定位,決策和行動 - 是作戰人員使用數據不僅實現有根據的決策,而且及時定位的循環。這些技術可以快速識別和響應網絡攻擊,分析模式以區分正常的網絡活動和可疑行為。此外,人工智能驅動的網絡安全系統可以從以前的攻擊中吸取教訓,并不斷提高其檢測和消除新出現的威脅的能力。

隨著世界的不斷發展,沖突的性質也在不斷變化。人工智能和機器學習已成為現代軍事武器庫中不可或缺的工具。他們處理大量數據、加強決策和實現實時響應的能力改變了武裝部隊的運作方式。

從提高態勢感知到徹底改變供應鏈管理和網絡安全,這些技術正在塑造戰爭的未來。

美國防部致力于遵循“設計即使用”的方法,在聯合全域作戰中利用這項技術。在開發解決方案時,每種服務都有不同的要求。

美國陸軍的要求可能是移動中的士兵或地面戰車;相比之下,對于空軍來說,這個案例可能是前沿空軍基地所需要的。

隨著向前邁進,這些技術的整合對于保持軍事優勢和確保軍事人員在現代戰場上的安全和成功仍然至關重要。借助人工智能和機器學習,無疑將能夠“以最先的速度”到達那里。

參考來源,David Wilson,美國陸軍維持司令部司令

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

圖:美國空軍的先進作戰管理系統有望實現跨所有領域、武器系統和指揮部的快速收集、處理和數據共享。(美國空軍)

明天的戰爭將在哪里獲勝?

這個問題的答案現在與十年前大不相同,因為戰場已經如此迅速地擴展到新的領域——也許最明顯的是進入數字領域。

無論是在傳統戰線(陸地、海上和空中)、網絡空間還是太空本身的戰斗,勝利都取決于我們根據傳感器、機器、無人機和其他數字系統生成的大量數據做出準確、閃電般快速決策的能力,此外還有幾十年來為國防相關決策提供信息的情報來源。

分析慣性

歸根結底,獲勝是關于擁有知識和洞察力,能夠比對手更快地做出更明智的決策。但是,盡管國防組織可能想要迅速采取行動,但無數經過充分探索和公開討論的因素,如龐大的官僚機構、過時的采購流程、過時的政策等,阻礙了機構轉型的規模和速度,以適應日益數字化的環境。

與此同時,今天的對手兇猛、靈活、數字化,并且不受成熟國防組織運作的深思熟慮、以流程為導向的環境的阻礙。

解鎖數字能力的核心是應用已經在整個商業世界中使用的高級分析。但很多時候,“分析慣性”正在限制進步,而掙脫束縛需要理解它為什么存在。

以下是有關如何獲得動力的一些原因和見解。

供應商鎖定

國防組織必須保持靈活性,以獲得最好的軟件,而不必擔心隨著技術和任務的變化而陷入未來可能不適合的解決方案中。如果技術合作伙伴沒有提供預期的結果,或者如果任務和優先事項發生變化,則必須將其替換。

許多負責獲得關鍵任務軟件的國防領導者——那些“接近”組織成功任務的軟件,例如支持情報和以運營為重點的組織的目標的分析解決方案——通常不愿意與商業提供商簽訂合同,因為擔心軟件可能成為任務成功的核心,并且隨著時間的推移,公司可能會在關系中獲得不成比例的影響力。相反,他們的默認模式是自己構建軟件功能——在大型咨詢機構的幫助下,與內部技術專家和其他利益相關者合作。

雖然這種方法可能耗費時間和資源,但它有效地繞過了“供應商鎖定”。但從某種意義上說,這種鎖定關系剛剛轉變為對永久服務成本的依賴,因為軟件是在內部從頭開始構建的,經過迭代以滿足需求,然后由一排開發人員維護。

這是最好的情況,因為許多這樣的感知永遠不會超越“永久迭代階段”——出于顯而易見的原因,專注于提供服務的實體滿足于保留。

國防合同的歷史充斥著這種功能失調關系的例子,這使得國防領導人很容易忽視過去十年左右商業軟件提供商之間發生的根本性轉變。在經歷了供應商鎖定的磨合之后,企業界改變了自己對商業供應商的軟件要求,要求這些解決方案更容易被替換。

如今,這已成為軟件提供商的一個關鍵賣點,基于對真正的商業軟件“為被替換而構建”的認識,使他們的解決方案比以往任何時候都更加模塊化。這從根本上改變了供應商/買方的關系,使國防組織更容易從世界領先技術解決方案的即用型功能中受益。

大規模分析

無論是將數據用于情報目的、供應鏈管理,還是任何數量的高度敏感、關鍵任務計劃,國防組織都會以指數級規模傳輸數據。因此,整個國防組織普遍認為,管理這些龐大的數據量的唯一方法是構建能夠勝任任務的解決方案。

的確,許多商業數據管理和分析解決方案無法處理軍用級數據量。另一個事實是,越來越多的精英商業解決方案正在被證明已經準備好迎接挑戰——用于商業環境,其規模可與國防應用相媲美。例如,雀巢在 24 小時內在其系統中移動了大約 10 億個 SKU。

可替換性

想象一下這樣一種情況:國防組織與符合“可替換性”要求的分析解決方案提供商簽訂了合同,然后決定替換它們。新的系統、流程和功能通過新的供應商成功實施......但數據是另一回事。以前的提供商使用專有的數據格式,該格式需要大量耗時的翻譯工作才能將其重新構建為可行的格式。這是太多國防領導人面臨的痛苦現實,而且是完全可以避免的。

負責分析軟件采購決策的國防領導者可以應用一個簡單的標準來避免將來出現困難的軟件轉換:如果解決方案依賴于專有數據格式,請取消其資格。相反,應專注于確保組織數據以可以永久使用的標準、非專有格式返回的解決方案。

明天的戰爭將在哪里獲勝?它們將在我們全國各地的會議室、會議室和實驗室中獲勝。只要有風險承受能力的領導者參與推動現有的慣性稍微偏離軌道,他們就會贏得勝利。最終,這些未來的戰爭將在數據、速度和信任的交匯處取得勝利。

參考來源:C4ISRNET

付費5元查看完整內容

航空航天和國防領域正在經歷一場變革,其主要驅動力是將人工智能(AI)和機器學習(ML)技術集成到為軍事設計的傳感器、武器和信息系統中。在精確度、快速決策和穩健性至關重要的環境中,人工智能/機器學習已成為一項關鍵技術,可加快對態勢的理解和決策,提高作戰效率。這些技術使軍事行動更有可能克服 "戰爭迷霧",人工智能/機器學習基于無休止和持續的信號收集,而不是人眼可見的跡象,使感官和態勢理解更加敏銳。這些部門的獨特要求,如多域作戰、極端條件下的應變能力、高風險決策、互操作性和先進的安全措施,為人工智能發揮重大影響創造了條件。

市場驅動力和獨特需求

航空航天和國防領域轉向人工智能有幾個關鍵因素:

1.快速準確的決策:軍事行動在時間和空間上都具有決定性意義。人工智能系統快速處理和分析海量數據的能力對于實時做出戰略和行動決策至關重要。挖掘來自不同來源和領域的信息并快速融合這些數據,可為決策者提供可在短周期內實施的行動情報,從而在分配的時間和空間內產生預期效果。

2.彈性和可靠性: 人工智能應用程序必須在各種具有挑戰性的環境中始終如一地運行;其建議和響應必須可信、可靠,并且不會出現商業大型語言模型(LLM)所遇到的 "幻覺"。信心和信任是軍事人工智能系統中最重要的因素,能讓用戶利用這些系統發揮最大價值。安全和信心不應是設計功能,而應是軍事人工智能系統基線基礎設施的一部分。此外,還應考慮物理安全和安保問題,采用分布式系統、邊緣處理以及強大而有彈性的網絡,使人工智能隨時隨地為作戰部隊提供支持。

3.道德和受控的自動化:無論是否有制衡機制來實現人類的信任,軍事系統的高風險都要求人工智能系統納入并遵守道德標準,并允許人類在不減慢整個流程的情況下進行監督。盡管 "道德標準 "是一個不固定的術語,取決于設計者和用戶的法律、文化、宗教和社會背景,但它為人工智能操作定義了 "游戲場地 "和邊界,就像戰爭法定義了作戰人員在戰時能做什么或不能做什么一樣。

4.先進的安全措施:鑒于國防行動的敏感性,人工智能系統必須具備無與倫比的網絡安全能力,消除系統訓練和操作過程中的不利和惡意行為。人工智能系統依賴于網絡、信息、數據饋送以及通過訓練嵌入的算法。在設計或訓練過程中篡改這些基礎,或在系統運行階段對其進行惡意操作,都可能會給用戶和依賴系統帶來巨大風險和意想不到的后果。因此,從早期設計階段就應考慮安全措施,包括風險檢測、規避和應對。

領先企業及其影響

研究了數十家公司的產品,觀看了演示,并在展覽和會議上聽取了官員的介紹。通過研究,掃描了市場上專為軍事行動設計或能夠支持軍事用途的人工智能系統。使用現有最好的人工智能工具進行研究,但即使這樣也需要大量的人工分析才能提供符合標準的可用信息。在第一部分中,挑選了五個在軍事行動中表現出色的人工智能系統。

洛克希德-馬丁公司

為何選擇:作為行業領導者,洛克希德-馬丁公司是將人工智能廣泛應用于國防領域的典范。他們的 AI Factory 計劃展示了他們在該領域推進 AI/ML 技術的承諾。它提供了一個安全的端到端模塊化生態系統,用于訓練、部署和維持可信賴的人工智能解決方案。其功能側重于從開發到部署和維護的自動化,應用 MLOps 解決方案(機器學習運營)來驗證、解釋、保護和監控所有機器學習生命周期階段,并創建可跨項目重復使用的參考架構和組件。

影響:從作戰飛機到太空探索,洛克希德-馬丁公司通過其人工智能驅動的解決方案影響著全球國防戰略,樹立了行業標準并為未來的技術進步鋪平了道路。

Palantir科技公司

為何選擇: Palantir 在大數據分析領域舉足輕重,為情報收集和作戰計劃提供人工智能平臺。他們的 AIP 平臺為綜合解決方案奠定了基礎,通過向決策者提供相關信息、利用可用傳感器增強信息以及根據對信息、紅軍和藍軍戰術、技術和程序(TTP)的理解向決策者提供相關的、可操作的響應,從而增強軍事組織的能力并使其同步化。

影響: Palantir AIP 將大型語言模型和尖端人工智能的力量結合起來,激活數據和模型,以安全、合法和合乎道德的方式從最高度敏感的環境中獲取信息。他們的系統利用信息源的可追溯性和可信推理,在復雜的國防環境中實現數據驅動決策,說明人工智能在作戰計劃和情報行動中的重要性與日俱增。

安杜里爾工業公司

為何選擇:Anduril Industries 站在將人工智能整合到自主系統和監控技術的前沿,改變傳統的防御戰略,采用可信賴的有人無人操作能力。

影響:他們的任務自主方法是從邊境安全和態勢感知發展而來的。他們的 Lattice AI 操作系統重新定義了防御方法,引入了分布式任務自主,采用由小型人類團隊操作的眾多無人系統。核心軟件提供傳感器融合、目標識別和跟蹤、智能網絡、指揮和控制。與其他解決方案不同的是,Anduril 的方法是通過添加可操作的使能因素,將其人工智能的覆蓋范圍擴展到 Lattice 核心之外--在安全領域,這些使能因素包括 Sentry 傳感器、Anvil 和 Roadrunner 反制措施。在進攻性打擊任務中,例如在美國陸軍的 "空中發射效應 "中,該系統通過Altius長續航時間傳感器、Fury Attritable飛機和Altius 700M效應器,將Anduril的移動自主概念發揮到極致。作為一個集成解決方案,它通過擴展覆蓋范圍、能力和態勢感知,使人類能夠使用自主系統,同時使作戰人員能夠更快地做出更好的決策。

C3.ai公司

為何選擇:C3.ai 的突出之處在于其將各種人工智能工具整合到 AI-Readiness 中的戰略,這是一個安全、統一的平臺,具有可信任、彈性和可互操作的可擴展系統,可在整個生命周期內連接和管理復雜且不同的資產。

影響: 通過提高決策和運營效率,C3.ai 的解決方案優化了資源管理和維護計劃,證明了人工智能在提高國防資產的可用性和使用壽命方面的作用,同時還能保持高安全標準。為支持引入人工智能驅動的解決方案,該公司提供了一個人工智能開發工作室,將技術評估加速到數天,并在數周或數月內完成應用開發和部署,而不是數年。

赫爾辛公司

為何選擇:赫爾辛公司代表了新一輪專注于專業人工智能應用的國防初創企業,他們得到歐洲主要國防企業的支持,凸顯了赫爾辛公司在人工智能國防市場的潛力和影響力。

影響:赫爾辛公司在情報分析和決策支持方面的人工智能解決方案利用先進的目標識別和人工智能賦能的電子戰技術,與其他合作伙伴的解決方案一起,必將成為雄心勃勃的未來空戰系統(FCAS)這一任務系統的人工智能支柱的一部分。赫爾辛公司專為現代戰爭量身定制,將為未來提供獨一無二的人工智能國防和航空應用。自 2022 年以來,赫爾辛公司一直活躍在烏克蘭,為前線作戰提供能力和技術。

結論

正如這些領先公司所展示的那樣,航空航天和國防領域正在走向以人工智能為中心的未來。市場格局多種多樣,發展迅速。每家公司都以獨特的方式塑造人工智能的市場、技術和未來,凸顯了人工智能對全球國防和航空航天戰略的變革性影響。這一趨勢增強了當前的能力,為軍事和太空行動開辟了新的可能性,標志著國防技術進入了一個新時代。

參考來源:DEFENSE UPDATE

付費5元查看完整內容

本文討論了在軍事領域決策過程中使用人工智能(AI)的好處和注意事項。文章側重于三個主要方面:提供更快、更準確信息的能力,掌握情況和減少人為錯誤,以及在使用這種技術時必須考慮的技術和倫理因素。人工智能可以大大改善軍事領域的決策;然而,重要的是要反思與使用人工智能相關的倫理和技術影響。

關鍵詞 人工智能、情境領域、減少人為錯誤、合成環境、顛覆性技術、知情決策。

1 簡介

人工智能(AI)已成為包括軍事在內的各個領域的重要工具。人工智能的定義是開發計算機系統,使其能夠執行通常需要人類典型的理性智能才能完成的任務,包括識別語音、做出決策和解決問題。在軍事領域,人工智能可以通過實時處理有價值的信息,幫助指揮官更快、更準確地做出決策。然而,人工智能在軍事領域的應用也帶來了倫理和技術方面的挑戰,例如在隱私和數據安全等方面對人類的影響。必須了解人工智能在軍事領域的優勢和挑戰,才能有效、負責任地實施人工智能。從這個意義上說,人工智能的應用可以優化指揮官在戰場上及時做出明智決策的能力。此外,對大量信息的即時處理使人們有可能對全景有更全面的了解,這為預測突然變化和可能出現的風險提供了依據,而這些都需要掌握態勢。這也有助于減少個人失誤,擺脫每個人的局限性。不過,有必要考慮在對這一顛覆性技術進行管理時所涉及的倫理問題。

2 人工智能在決策中提供快速準確的信息

在軍事領域使用人工智能并非新概念。然而,在很短的時間內,它已成為一種日益重要和有用的工具。它能夠高速、準確地處理大量數據,并分析模式和趨勢,提供重要信息,幫助指揮員在發生危機時執行措施,而危機需要快速、有效的反應,這在完成任務可能受到影響的情況下非常有用。

此外,人工智能還能識別人類可能忽略的模式和趨勢,從而更好地進行數據分析。這樣就能更全面、更清晰地了解任何情況,使軍方能夠做出更明智的決策。人工智能還能將數據收集和分析等乏味的重復性任務自動化,從而騰出時間實施更相關的行動。

從這個意義上說,人工智能提供信息的速度和質量對軍事決策過程有著積極的影響。指揮官可以擁有一種工具,使他們在行動發展過程中更容易選擇并永久保持認知優勢。所謂 "認知優勢",是指在戰場上以最有效的方式利用信息和知識的能力。這意味著,人工智能可用于規劃過程、開展行動,甚至在任務完成后提供反饋并鞏固認知優勢。

同樣,在軍事行動規劃中,人工智能可以分析數據、生成情報,并提供需要優先處理的局勢變化信息以及可用資源和其他重要因素。在戰爭實施過程中,人工智能可以提供有關設備變化、通信流量和其他關鍵因素的實時數據。這一優勢將使指揮官有能力在不斷變化的情況下做出快速有效的決策,并確保其部署的資產始終處于有利地位。例如,某國開發了一套自主車輛系統,用于收集戰場信息,其目的是對信息進行處理,以便為決策提供準確的要素;它甚至可以在結果評估方面提供幫助。

3 掌握情況和減少人為錯誤

據西點軍校現代戰爭研究所稱,人工智能的多任務特性使其可以通過與不同決策層的偵察、監視和情報集成手段的實時連接,用于收集和處理信息。人工智能能夠處理大量數據并從中學習,這意味著指揮官可以提高對態勢的掌控能力,減少危急情況下的人為錯誤。

一方面,人工智能可以實時處理信息,全面了解戰場態勢。此外,人工智能還能分析歷史數據和趨勢,在更短的時間內預測局勢并做出更準確的決策。同樣,如果與能夠以自身標準開展行動的自主手段銜接,就可以省去暫停行動的必要,從而有可能對對手保持持續的壓力。例如,人工智能可以分析敵人的行為模式并預測未來的動向,從而用于制定不確定性余地更小、細節更精確的應急計劃。

另一方面,在軍事決策過程中應用人工智能還能減少人為錯誤。從這個意義上說,由于軍事力量的應用所隱含的后果,指揮官的決策能力面臨著需要高度重視的情況。例如,法律方面的考慮,如尊重人權或保護自己的部隊,被證明是涉及道德的因素,最終會對指揮官產生壓力,并可能導致因疲勞、恐懼或缺乏經驗而做出錯誤的決定。在這種情況下,人工智能通過提供準確可靠的信息,有助于最大限度地減少這些錯誤。

此外,人工智能還可用于模擬合成環境中的情況,讓軍事人員在安全可控的環境中練習、積累經驗并提高技能。因此,美國陸軍正在利用人工智能的優勢培訓步兵單元指揮官,根據戰術形勢的變化--面對模擬對手--創建可變場景,對手的反饋和快速決策能力豐富了培訓經驗。這樣就能加強美國陸軍培訓的步兵指揮官的決策和掌握情況的能力。總之,在軍事決策過程中應用人工智能,可以讓負責任的指揮官提高對態勢的掌握能力,減少人為錯誤。

4 技術和倫理方面的考慮

人工智能這一技術正越來越多地應用于軍事領域,目的是提高軍事行動的效力和效率。然而,人工智能的使用也帶來了一些重要的技術和倫理問題,必須認真加以解決。從這個意義上說,不應無視這一現實,也不應無視在使用這些技術時因其顛覆性而涉及的考慮因素。

從技術角度看,在軍事決策過程中使用人工智能有可能提供更快、更準確的信息,提高對態勢的認識,并降低人為錯誤的風險。然而,人工智能的使用也帶來了必須妥善解決的重大挑戰。首先是人工智能所使用數據的質量問題,人工智能的正常運行依賴于準確、高質量的信息。如果不具備這些特征,人工智能除了在訓練中出現錯誤外,還可能做出不正確或不恰當的決定。因此,必須掌握準確的最新數據,以確保人工智能的效率。其次,必須有足夠的基礎設施供其使用。換句話說,人工智能需要大功率的計算基礎設施和可靠的通信網絡才能良好運行。因此,要想在軍事決策過程中充分發揮人工智能的潛力,就必須對基礎設施進行投資。

另一方面,從道德角度來看,使用人工智能會引發重要的思考,例如它對受武裝沖突影響的戰斗人員、非戰斗人員和平民的生活會產生什么影響。因此,必須制定明確和透明的政策,規范在軍事情況下使用人工智能。在這方面,為確保在軍事領域有效使用人工智能,有必要明確以下幾個方面: 首先,必須制定明確透明的人工智能使用政策,并確保所有專家、人工智能操作員都接受過使用、監督和控制該技術的培訓。其次,必須確保提供有效使用人工智能所需的計算和通信基礎設施。這包括購置適當的設備和技術,以及建立安全可靠的通信網絡。因此,要充分利用人工智能在軍事決策中的潛力,就必須對基礎設施進行投資。

結論

人工智能可提高收集信息的速度和準確性,并增強及時做出明智決策的能力,從而提高軍事行動的效力和效率。此外,使用人工智能還有助于減少人員傷亡和附帶損害,從而保護平民和限制軍事行動對非戰斗人員的負面影響。為了充分發揮人工智能在軍事領域的潛力,必須制定清晰透明的使用政策,優先培訓軍事人員使用人工智能,并與學術研究機構簽訂合作交流協議。這將有助于最大限度地降低在軍事行動中使用人工智能的風險,最大限度地提高其效益。在軍事領域的決策過程中使用人工智能的經驗,主要參與者是美國陸軍等,由于不斷競爭以加強其在世界上的存在,他們一直在加速發展這項技術。可以從中汲取重要的經驗教訓,以發展自己的人工智能,并闡明國防方面的需求,特別是在軍事決策過程中。總之,在決策過程中適當實施人工智能,可受益匪淺。這可以通過提供更快、更準確信息的自主系統來實現;也可以通過在模擬器中使用合成環境對指揮官進行決策培訓來實現;最后,還可以通過減少處理過程中的人為錯誤來實現。

參考來源:CEEEP

付費5元查看完整內容

大數據與人工智能(AI)的結合實現了準確預測和明智決策,為工業和研究帶來了革命性的變化。這些進步也在軍事領域找到了自己的應用位置,一些舉措整合來自不同領域的數據源和傳感器,提供共享的態勢感知。在城市軍事行動中,及時了解具體情況的信息對于實現精確和成功至關重要。數據融合將來自不同來源的信息結合在一起,對實現這一目標至關重要。此外,民用數據可提供關鍵的背景信息,并對任務規劃產生重大影響。本文提出了軍事數據空間(MDS)概念,探討大數據如何通過結合民用和軍用數據來支持軍事決策。文章介紹了使用案例,強調了數據融合和圖像認證在提高數據質量和可信度方面的優勢。此外,還討論了數據安全、隱私、完整性、獲取、融合、聯網和利用人工智能方法等方面的挑戰,同時強調了構建下一代軍事應用的機遇

I. 引言

大數據的興起改變了企業存儲、管理和分析海量數據的方式。此外,大型數據集的可用性和更強大硬件的發展也為人工智能(AI)時代的到來鋪平了道路。盡管存在局限性,但這些課題在軍事領域也找到了適用性。其中一個例子是美軍使用的多域作戰(MDO),后來擴展為聯合全域指揮與控制(JADC2),以及 "共同作戰圖景"(COP)概念,這些概念整合了多個領域(陸地、海洋、空中、太空和網絡空間)的各種數據源和傳感器,使決策變得更快、更明智,提供了從戰術到戰略的各級組織的共享態勢感知。此外,北約社區已通過北約核心數據框架(NCDF)討論并測試了數據湖概念,以便在適當的時間/形式與聯盟伙伴共享可靠的跨域信息。

利用先進的算法和計算能力,人工智能可以處理龐大的數據集,揭示人類通常無法察覺的復雜模式。這使國防行動能夠增強實戰經驗、促進任務執行、做出數據驅動的決策、協調來自不同來源的數據,并加強應對威脅和災難的準備。通過整理來自不同來源的數據,指揮與控制(C2)部門可以深入了解城市景觀,并通過數據融合技術[3]、[4]促進態勢感知決策[1]、[2]。現代城市部署了傳感器網絡,利用大數據支持城市軍事戰略。此外,社交媒體平臺是寶貴的文本、圖像和視頻來源,豐富了態勢感知,但也帶來了數據完整性等挑戰。在 "非戰爭 "行動中,包括打擊腐敗政府、毒品販運和人道主義任務,大數據、數據融合、數據完整性和人工智能在任務成功中的重要作用在當代全球格局中變得顯而易見。

本文深入探討了利用大數據促進軍事決策以及相關挑戰。文章以簡明易讀的方式涵蓋了該領域相對欠缺探索的各個方面。在此背景下,研究介紹了軍事數據空間(MDS)的概念,這是一種將軍內數據(IMD)和軍外數據(EMD)結合在一起的新方法,旨在引發討論并開發軍事解決方案。然后,它通過以數據融合和圖像完整性機制為重點的使用案例來說明大數據的好處。最后,它討論了使用大數據的挑戰和機遇,集中在支持戰略性軍事決策必須考慮的四個主要方面:i) 數據融合;ii) 安全/隱私和完整性;iii) 人工智能;以及 iv) 網絡作為訪問大數據的手段。

從網絡視角討論數據傳播問題具有現實意義,文獻中也有廣泛論述。因此,本研究旨在引發對大數據觀點的討論,以及利用大數據造福軍事系統的可能性。此外,我們還強調了應對整合 IMD 和 EMD 相關挑戰的重要性。這種整合對于建立有凝聚力的大數據,最終提高軍事決策能力至關重要。總之,本文的貢獻如下:

  • 引入一個整合軍用和民用數據的新概念:軍事數據空間(MDS)框架。
  • 通過 MDS 框架的出現,確定大數據固有的關鍵挑戰和機遇。
  • 兩個說明性用例,突出數據融合和完整性在支持戰略決策方面的優勢。

文章結構如下。第二節介紹了 MDS 的概念。第三節回顧了有關軍事和民用場景中大數據的最新文獻。第四節介紹兩個使用案例,說明大數據如何支持軍事決策。第五節討論了軍事數據領域的挑戰和機遇。最后,第六節總結了本研究討論的主要方面,為文章畫上了句號。

II. 軍事數據空間

軍事數據空間(MDS)的概念是根據 [5] 中討論的觀點提出的。它提供了一個以數據為驅動的軍事場景視角,有助于根據不同的數據源做出決策。MDS 包括兩個主要類別: 軍內數據(IMD)和軍外數據(EMD),如圖 1 所示。目前大多數軍事文獻都只針對 IMD 提出和評估系統(如中間件、協議)。然而,隨著信息和通信技術(ICT)的迅猛發展,民用系統已成為不可忽視的數據和基礎設施(網絡)的重要來源。因此,考慮到數據隱私/安全、完整性、獲取、融合、聯網和利用人工智能等挑戰,MDS 旨在支持關于 EMD 如何幫助軍事決策的討論。

圖1 軍事數據空間。

A. 軍內數據

IMD 與軍方提供和消費的數據相對應,主要分為兩層:帶有真實/虛擬傳感器(來自空間/航空/地面/航海單元)的基礎設施和信息層,包括作戰、情報和后勤數據。

基礎設施包括傳感器(如雷達、聲納、照相機)和其他電子系統收集的數據,可探測和跟蹤空中、陸地或水中的物體;車輛傳感器可提供軍事單元和周圍的狀態;可穿戴/智能和物聯網(IoT)設備可通過 GPS 定位、地圖、健康測量、實時照相機(高分辨率、紅外線)等為戰場上的步兵提供支持。這些數據可用于監測和識別潛在威脅、協助鎖定敵軍目標以及監測步兵狀況。

除了來自真實/虛擬傳感器的原始數據外,IMD 還包括信息層,該層融合了從作戰到情報等各種來源收集的數據,以創建一個更可靠、更廣闊的作戰視圖,這也是 JADC2 和 COP 系統的目標。情報信息可幫助軍隊了解敵軍的能力和意圖,識別潛在威脅并制定作戰計劃。后勤數據提供有關物資、裝備和人員的信息,如運輸時間表、庫存水平和維護記錄。這些數據對于確保軍隊擁有有效執行任務的資源至關重要。

B. 軍外數據

軍外數據是由真實/虛擬傳感器單獨或融合提供的數據子集,可描述軍事行動周圍的環境。因此,可定義用于支持軍事行動的兩個主要數據層:基礎設施(如交通系統、天氣、當局)和信息(如社交媒體、新聞、政府報告)。這些層產生了大量高度可變的信息,從用戶對實時事件(如事故、腐敗和恐怖主義)的感受和照片,到城市環境中的交通/天氣狀況和人們/駕駛員的行為。

信息和通信技術在城市地區的發展催生了智能城市的出現,智能城市通過增強流動性、安全性和健康解決方案來應對城市化帶來的挑戰。智能城市基礎設施包含傳感器,可捕捉有關車輛、交通、天氣和駕駛員行為的寶貴數據。傳感器和物聯網設備的激增也產生了大量數據,這使得利用云通信技術和人工智能應用開發智能系統成為可能。在大數據的推動下,數據融合應運而生,它整合了來自多個提供商的數據,以提高質量和覆蓋范圍,并減少海量數據流量。融合來自交通、天氣、攝像頭、醫療系統等的數據,不僅有可能支持民用應用,還能通過提供上下文數據支持戰略性軍事行動。在傳感器基礎設施有限的情況下,來自社交媒體和政府報告等媒體來源的數據可幫助了解當地行為,并識別影響犯罪、腐敗和毒品販運的因素。

社交媒體數據對于支持與緊急事件和災難相關的信息非常有價值,可通過捕捉獨特信息(如需要救援的群體的位置或隱藏人員的存在)來補充其他傳感器數據。建筑物上的固定傳感器和監控攝像頭可幫助進行人員跟蹤,以準確識別位置。社交媒體數據與其他數據源相結合,有助于敵情偵查和戰術規劃。與交通相關的傳感器數據,特別是交通監控攝像頭,在應急響應和軍事后勤方面發揮著重要作用。它可以檢測事故造成的擁堵和堵塞,從而改進軍事行動期間的路線規劃和交通管理。整合所有收集到的信息可增強態勢感知,促進城市環境中行動的有效規劃和管理。

針對近期發生的事件,如俄羅斯戰爭以及美國和巴西等國的反民主極端分子所帶來的挑戰,已經出現了多項舉措。其中一個例子是 ACLED(武裝沖突地點和事件數據)項目,該項目提供有關政治暴力和抗議事件的實時全球數據。另一個值得一提的項目是 DATTALION,這是一個廣泛的開源照片和視頻片段數據庫,記錄了俄羅斯對烏克蘭的戰爭。該數據庫的主要目的是反擊俄羅斯政府散布的錯誤信息。聯合國開發計劃署(UNDP)利用機器學習(ML)算法和大數據來檢測烏克蘭東部受損的基礎設施。語義損壞檢測器 (//tinyurl.com/semdam) 利用衛星圖像和地面照片對算法進行訓練,以識別建筑物、道路和橋梁的潛在損壞,協助地方當局和人道主義組織確定行動的優先次序。這些舉措極大地促進了 MDS,特別是 EMD,為分析和研究提供了寶貴的資源。

III. 軍事領域的大數據

本節探討大數據在軍事領域的應用,重點從數據內(IMD)和數據外(EMD)兩個角度概述大數據在軍事行動中的重要意義,并探索利用其潛力的最新解決方案。

A. 軍內數據

大數據在軍事領域的一些挑戰已在文獻中提出,并成為北約社區討論的主題,如作戰安全性、漏洞加固和數據可靠性[1]、[2]、[6],以及北約 IST160 和 IST-173。納入與外界幾乎沒有聯系的自主隔離(如 EMD)可能會限制大數據的自由流動,這就要求在保持系統自主性和保護性的同時,以創造性的方式利用大數據。在這一方向上,COP 和 JADC2 引導研究人員和行業使用和融合來自不同軍事實體的數據,以支持戰略決策。

Kun 等人[1]提出了在軍工企業構建大數據平臺、建立多級數據通道、實現全面數據管理和控制的詳細技術方案。該平臺有利于數據的收集、組織、處理和分析,將數據轉化為知識,以加強決策/服務支持、創新、質量控制和風險管理。Xu 等人[6]強調了數據科學在當代戰爭中實現信息優勢的重要性。他們的系統性綜述顯示,社會科學文獻對數據科學風險給予了極大關注,這可能會影響政治和軍事決策者。然而,與戰術層面相比,科學文獻缺乏對作戰和戰略層面風險的關注,這表明存在研究空白。這一差距可能是由于 IMD 與 EMD 之間缺乏聯系造成的,而 EMD 可以支持行動和戰略決策。

B. 軍外數據

  1. 數據融合: 大數據在異構數據融合中發揮著至關重要的作用,其目的是將多種記錄合并為一致的表示形式,提高數據質量并減少通信開銷。然而,由于數據語義和時空覆蓋范圍的原因,挑戰也隨之而來。在軍事應用中,異構數據融合對于設計信息系統,增強復雜的城市戰爭或反恐場景中的信息優勢和感知能力非常有價值。強大的系統對于處理敏感數據(如個人數據或戰略任務/政府計劃)至關重要。數據融合可減輕信息過載,提高準確性,并利用知識支持戰略行動和形勢評估[3]。

多傳感器數據融合(MSDF)方法是在戰術場景中提供快速高效的目標探測、跟蹤和威脅評估的一個實例,如文獻[4]所示。數據融合的另一個應用領域是基于位置的社交媒體(LBSM),它可以增強各個領域的知識,包括交通特征描述和事故檢測[7]。利用 LBSM 系統可以獲得更詳細的交通數據,有利于軍事后勤工作。在特定的軍事環境中,可以利用 LBSM 系統的潛力來提高數據可用性,并實現情境感知操作。

  1. 數據安全、隱私和完整性: 設計在數據庫中存儲和收集信息的軍事系統時,安全和隱私是關鍵的考慮因素。安全性旨在防止未經授權的數據修改,而隱私性則保護個人的信息[8]。然而,從公開來源收集數據,尤其是從普通用戶(EMD)收集數據,會給系統安全和用戶隱私帶來風險,使其容易受到攻擊和數據泄露。IBM 的《2022 年數據泄露成本報告》指出,網絡攻擊成本與上一年相比增加了 2.6%,全球平均數據泄露成本達到 335 萬美元。此外,該報告還顯示,83% 的被調查組織經歷過多次數據泄露,這凸顯了保護這些系統安全所面臨的挑戰。

數據完整性對于維護對 MDS 的信任至關重要[9]。被篡改的數據會產生嚴重后果,影響民事和軍事決策過程,破壞對數據源的信心。社交媒體平臺上錯誤信息的泛濫就是這一挑戰的例證,這些錯誤信息往往被利用來施加政治影響,烏克蘭正在發生的沖突就是一例。為應對此類問題,Twitter 等平臺修訂了其政策,標記了許多與俄羅斯國家附屬媒體相關的推文,并檢測了數十億條與沖突相關的實時推文印象[10]。

與此同時,圖像認證的出現解決了人們對圖像完整性和來源驗證的擔憂。然而,包括人工智能軟件在內的先進圖像處理工具的興起使圖像驗證變得越來越棘手。雖然圖像驗證引入了水印、數字簽名和感知散列(pHash)等多種技術[11],但每種技術都有其優勢和局限性。例如,水印可提供真實性和所有權保護,但可能會影響圖像質量,而且容易受到高級處理技術的影響。相比之下,pHash 可以靈活地進行圖像操作,并對內容變化敏感,因此特別適合在社交媒體平臺上使用。在數據完整性和圖像認證的背景下考慮這些挑戰和解決方案至關重要。

IV. 使用案例

A. 數據融合

首先,大數據的時空融合是為了支持軍事決策。由于缺乏所討論的可用 IMD,多數據融合(MDF)框架[12]被實例化,用于收集、準備和處理 EMD,并將其融合以提供豐富的信息。為了證明時空數據的豐富性,MDF 利用基于云的系統共享數據的公共可用性獲取了交通系統數據。不過,該框架可擴展到其他各種數據類型。其目標是提高數據質量、改進 C2 系統和軍事后勤,并支持城市地區的 COP/JADC2,從而創造出將融合 EMD 與來自不同領域的可用 IMD 結合使用的新方法。下文圖 2 介紹了 MDF 的主要功能。此外,還通過分析數值結果討論了融合大數據的好處。

對于數據采集,圖 2 (1)配置了一組參數(如區域、請求頻率)和數據源,MDF 為此收集各種格式的數據,并將其存儲在文件中。在準備階段(2),通過將不同的地物名稱和類型轉換為統一的表示方法,對輸入數據集進行標準化。這包括各種數據映射,以生成統一的數據類型,例如將描述性映射為數值或降低數據粒度。此外,還啟動地圖匹配,將所有地理定位數據(可能具有不同的精確度)融合到同一個路網中。MDF 對所有收集到的數據進行預處理,并從收集到的區域獲取 Shapefile (SHP)。請注意,根據應用目標和可用數據類型,框架可能會應用不同的特征提取方法,如自然語言處理(NLP)(情感分析、關鍵詞提取、詞法化、詞干化和自動摘要)或圖像處理(圖像分割、邊緣檢測和對象檢測),以從非結構化數據類型中提取信息。在使用案例中,我們沒有使用 NLP 算法,因為數據是無文本圖像和基于交通的數據。不過,建議的數據融合框架具有多功能性,可以處理各種數據類型,包括可以應用 NLP 技術的文本數據。

圖2 數據融合框架工作流程。

第三階段實現時間/空間數據融合和數據導出。為確保數據完整性,需要事先過濾非信任信息或有偏見的信息,例如,根據信息在不同數據源或圖像認證機制中的出現情況,使用驗證信息的方法,如第四節B部分所述。時間數據融合是通過對任意時間窗口(如每分鐘、每小時、每天)內的數據進行分組來實現的。為了進行空間融合,MDF 利用地圖匹配,根據底層道路網絡在規定的精確度下對 GPS 點進行對齊。由于不同數據源的 GPS 報告精度各不相同,因此必須這樣做,才能將所有地理定位數據映射到相同的道路網絡中。

最后,在圖 2 (4)中,豐富的數據以不同的格式輸出,為軍事和民用領域提供了多種可能性。MDF 的輸出通過創建不同類型的統計數據和可視化效果來支持時空分析,從不同的空間和時間方面描述可用信息的特征。

  1. 結果: 為了展示數據融合的優勢,表 I 總結了 MDF 框架在實際實驗中的結果。該實驗為期九個月,在兩個不同的城市收集了四類民用交通數據(交通流量、事故、車輛數據和天氣狀況)。數據融合使科隆的數據覆蓋率提高了 173%,覆蓋了 5081 條道路,而僅使用Traffic HERE數據源時僅覆蓋了 1379 條道路,波恩的數據覆蓋率提高了 137%。此外,通過重疊路段豐富信息的潛力達到了 39.5%,從多個來源提供了事件的詳細描述。

表I 按數據來源分列的道路覆蓋情況。

B. 數據完整性

之前的工作[11]介紹了一種利用 Twitter 和 Facebook 來確保圖像完整性的圖像認證系統。該系統采用卷積神經網絡(CNN)和全連接層(FCC)進行特征提取,采用位置敏感散列(LSH)進行散列構建,并采用對比度損失最大化原始圖像和篡改圖像之間的差異。該模型的輸出是每個圖像 1024 位的固定長度向量表示。

為解決在城市軍事行動和民用系統中保持圖像完整性的重要性,提出了圖像事實檢查器(IFC),如圖 3 所示。它能檢測虛假圖像,確保數據的可信度,并作為當局主導的認證系統,打擊錯誤信息。系統會生成帶有徽標或圖標的驗證版照片,表明其已通過 IFC 系統驗證。此外,IFC 還提供了圖像的感知散列(pHash)字符串表示,可將其納入描述或在其他網站上共享。數據融合系統是 IFC 的一個可能的終端用戶,它可以在應用時空融合和生成豐富數據之前對抓取的圖片進行驗證。

圖3 Image-Fact-Checker (IFC)。

建立一個能提供即時真實信息的自動化系統是一個相對較新的概念,因此通過比較來評估其有效性具有挑戰性。然而,由于創建令人信服的偽造圖像的人工智能生成模型的興起,實施圖像認證系統現在變得至關重要。添加這一系統作為驗證層有助于防止或減少虛假信息的傳播,尤其是考慮到不斷發展的互聯網法規會對缺乏反虛假信息措施的平臺進行處罰。一種有效的方法是將 IFC 系統與政府機構連接起來。IFC 方法具有通用性和可擴展性,可提高個人的意識和信任度。

  1. 成果: 使用 IFC 系統提高了數據的可信度,并能檢測到圖像操縱行為。在烏克蘭-俄羅斯沖突等沖突局勢中,受俄羅斯襲擊影響的平民在社交媒體上分享圖片,但對其真實性產生質疑。IFC 可以使用 DATTALION 數據集對這些圖像進行驗證,從而可以快速將其分發給救援隊、聯合國或北約等相關組織。這加快了對襲擊的響應速度,并提供了針對俄羅斯的可靠證據。在交通等民用場景中,從普通用戶那里獲取實時和經過驗證的信息可以加強路線更新和應急響應方面的決策。

圖 4(左)是通過 DATTALION 從普通社交媒體用戶那里收集到的兩張未經驗證的圖片。這些圖片只是更大數據集中的一小部分。用戶通常不愿意相信這些來源,因此有效利用這些來源具有挑戰性。然而,當這些圖像經過 IFC 機制處理后,其可靠性就會提高,因為任何進一步的篡改都很容易被檢測出來。如圖 4(右圖)所示,應用 IFC 后,每張圖片都會收到 pHash 和相關信息,如圖片描述、提取的特征、位置、事件日期、抓取日期、發布者 ID。這些經過處理的圖像將存儲在 IFC 數據庫中,供今后查詢。該數據庫有多種用途:重復檢測、完整性驗證以及滿足特定最終用戶的要求。

圖4 使用IFC提取圖像細節。

V. 軍事數據空間的挑戰與機遇

A. 數據融合

數據融合的第一個挑戰是尋找和獲取軍事和民用領域的可用數據。出于隱私/安全考慮,信息可能無法廣泛獲取或獲取途徑有限。在軍事領域(IMD),數據受到更多限制,這為探索可用的民用數據(EMD)以支持戰略性信息決策提供了機會。第二個值得注意的挑戰是融合多種數據源,這些數據源可能具有不同的結構(結構化、半結構化和非結構化數據)、標準、數據類型(如文本、圖像、視頻)、測量單元、粒度和時空覆蓋范圍。因此,需要深入了解如何準備和處理不同的數據集,并將其融合為一個數據集。

處理社交媒體中的圖像和文本需要進一步的程序,如特征提取方法(如 NLP 和圖像處理),以提取可用信息。盡管數據融合面臨諸多挑戰,但將從不同角度(如指揮部、用戶、記者、政府、傳感器)描述同一空間和時間的不同數據源結合起來的好處,可以加強軍事行動的規劃和戰略階段,為 COP 和 JADC2 系統提供支持。

B. 數據安全、隱私和完整性

  1. 數據安全與隱私: 保護敏感的軍事信息對國家安全至關重要。需要強大的加密、安全的數據存儲和訪問控制來降低風險。建議采用的技術包括公鑰基礎設施(PKI)安全、受保護內核、數據加密、防火墻和入侵檢測。然而,如何在數據共享、有利于信息融合和安全/隱私措施之間取得平衡,對軍方來說仍是一項具有挑戰性的任務。

  2. 數據完整性: 被操縱的數據會給民用和軍用決策帶來風險,并降低對數據提供者的信任度。在生成內容的人工智能模型不斷進步的幫助下,篡改圖像迅速傳播,參與度不斷提高,這凸顯了對智能綜合解決方案的需求。通過社交媒體分享的圖片能夠快速傳達復雜的想法,從而為救援行動提供支持,使人們能夠立即采取行動,如在城市發生事故/災難時改變交通路線。圖片還能喚起情感聯系,增強讀者對新聞事件的理解。然而,烏克蘭戰爭等危機擴大了錯誤信息的傳播,這就需要 snopes.com 和 norc.org 等人工事實核查機構的參與,以打擊錯誤信息。然而,在戰爭期間或為打擊腐敗政府而進行基于人工的實時核查可能會耗費大量時間,這就為設計自動系統來驗證圖像和處理虛假信息創造了機會。

C. 聯網

雖然這項工作的主要重點在于數據視角,以及確保使用來自不同來源的可信數據來支持軍事行動的相關性,但同樣重要的是要認識到網絡在有效提供數據和服務方面的重要性。在以網絡為中心的軍事行動中,利用高頻、甚高頻、超高頻、衛星通信、Wi-Fi 和 LTE 4-5G 等各種技術進行無線通信至關重要。有些技術擅長長距離覆蓋,但帶寬有限、延遲高,而且容易受到干擾。另一些則以可靠性為先,覆蓋范圍較短,帶寬較大,延遲較低。

以信息為中心的網絡(ICN)和軟件定義網絡(SDN)等網絡范例對于優化數據傳播和網絡協調至關重要[13],尤其是在網絡資源有限的情況下。在軍事網絡中,尤其是在戰術邊緣,數據傳播過程中會出現資源有限和安全問題等挑戰。為解決這些問題,軍方可能會探索包括民用網絡在內的各種基礎設施,以獲取和融合非軍事數據。以歐洲 5G COMPAD 聯盟為例,目前正在考慮采用 5G 技術。然而,由于硬件通信系統成本高昂、帶寬和互操作性有限,因此具有挑戰性。這就需要定制參考架構來滿足軍事通信需求。

在最近的烏克蘭-俄羅斯沖突中,俄羅斯對烏克蘭基礎設施的攻擊導致互聯網中斷,暴露了通信網絡的脆弱性。SpaceX 的 Starlink 衛星互聯網星座提供了一種解決方案,證明了在戰時利用民用網絡基礎設施的價值。盡管該技術有望提高互聯網在數據和緊急通信方面的可靠性,但它在網絡安全、覆蓋范圍、可靠性和成本效益方面仍面臨挑戰。

D. 人工智能

由于隱私、安全以及軍事機構為防止濫用和限制 IMD 的可用性而施加的限制,為人工智能研究訪問軍方擁有的大數據帶來了挑戰。此外,人工智能功能可能會受到對抗性攻擊的影響,對抗性攻擊會通過改變造成錯誤分類來欺騙人工智能模型。快速梯度符號法(FGSM)和語義攻擊等技術分別有助于識別和減輕計算機視覺和 NLP 中的此類攻擊。Yuan等人[14]對攻擊、對策和基于應用的分類標準進行了全面評述。

要檢測對抗性攻擊,一種有效的方法是使用具有與主人工智能模型不同特征的輔助人工智能模型。這一想法源于早期的衛星通信。當時,人們使用電報等輔助系統來防止對衛星通信的中間人攻擊或干擾攻擊。由于帶寬有限,輔助系統只能傳輸與完整衛星數據相對應的摘要數據,用于偵測攻擊和應急通信。同樣,在人工智能中防范對抗性攻擊時,傳統的 ML 可以作為輔助系統,產生與主要 CNN 方法一致的結果。對抗性攻擊依賴于計算機視覺深度學習模型中的梯度技術,而傳統的 ML 方法則使用不同的方法,這些方法對這些攻擊操作大多具有免疫力。

在軍事領域使用人工智能的另一個問題是需要共享敏感數據來訓練模型。在這方面,聯邦學習(FL)作為一種訓練 ML 模型的技術已經出現,在這種技術中,數據不會暴露,從而確保了數據的安全性和隱私性[15]。雖然它不能被視為對抗惡意攻擊的防御技術,但這種方法隱藏了敏感數據和模型或參數的一部分。這種技術對于建立在人工智能基礎上的新興軍事應用非常有價值。

VI. 結論

本文探討了大數據在軍事領域的應用。研究了與整合不同數據源、確保數據安全、隱私和完整性以及聯網和利用人工智能相關的機遇和挑戰。文章引入了 MDS 概念,以豐富和引導討論,強調納入民用數據的潛力,以提高軍事行動戰略決策所需的信息質量和數量。此外,文章還包括兩個實際使用案例,說明了數據融合的好處以及實施圖像認證機制以保持數據完整性的重要性。這些發現凸顯了大數據在軍事領域的重要意義,并強調了在該領域開展進一步研究和探索的必要性。

付費5元查看完整內容

在不到一年的時間里,Chat-GPT 已成為一個家喻戶曉的名字,反映了人工智能驅動的軟件工具,特別是生成式人工智能模型的驚人進步。伴隨著這些發展,人們頻頻預測人工智能將徹底改變戰爭。在人工智能發展的現階段,人們仍在探索可能的參數,但軍方對人工智能技術的反應是不可否認的。美國網絡安全和基礎設施安全局局長詹-伊斯特里警告說,人工智能可能是 "我們這個時代最強大的武器"。雖然自主武器系統在有關人工智能軍事應用的討論中往往占據主導地位,但人們較少關注在武裝沖突中支持人類決策的系統中使用人工智能的問題。

在這篇文章中,紅十字國際委員會軍事顧問魯本-斯圖爾特(Ruben Stewart)和法律顧問喬治婭-海因茲(Georgia Hinds)試圖批判性地審視人工智能用于支持戰爭中武裝人員決策時被吹噓的一些益處。其中特別討論了減輕對平民的傷害和節奏問題,尤其關注武裝沖突中對平民的影響。

即使在最近的炒作之前,人們可能已經以各種形式使用過人工智能,事實上,人們可能正在使用主要由人工智能驅動的設備閱讀這篇文章。如果您使用指紋或人臉打開過手機,參與過社交媒體,使用手機應用程序規劃過旅程,或者在網上購買過披薩和書籍等任何物品,那么這些都可能與人工智能有關。在很多方面,我們對人工智能已經習以為常,常常在不知不覺中將其應用到我們的日常生活中。

但如果人臉識別軟件被用來識別要攻擊的人呢?如果類似的軟件不是尋找最便宜的航班將你送往目的地,而是尋找飛機對目標實施空襲呢?或者,機器推薦的不是最好的披薩店或最近的出租車,而是攻擊計劃?這顯然是開發基于人工智能的國防決策平臺的公司 "即將到來 "的現實。

這類人工智能決策支持系統(AI-DSS)是一種計算機化工具,使用人工智能軟件顯示、綜合和/或分析數據,并在某些情況下提出建議,甚至預測,以幫助人類在戰爭中做出決策。

AI-DSS 的優勢往往體現在提高態勢感知能力和加快決策周期上。下文將根據人工智能系統和人類的局限性,并結合現代沖突的規劃過程,對這些說法進行解讀。

將沖突中傷害平民的風險降至最低

新技術在戰爭中的出現往往伴隨著這樣的說法,即新技術的整合將減少對平民的傷害(盡管在實踐中并不總是如此)。就 AI-DSS 而言,有人聲稱這種工具在某些情況下有助于更好地保護沖突中的平民。當然,國際人道主義法(IHL)規定,軍事指揮官和其他負責攻擊的人員有義務根據他們在相關時間所掌握的所有來源的信息做出決定。特別是在城市戰爭的背景下,紅十字國際委員會建議,有關平民和民用物體存在等因素的信息應包括互聯網等公開來源資料庫。此外,具體到人工智能和機器學習,紅十字國際委員會認為,只要人工智能-DSS工具能夠促進更快、更廣泛地收集和分析這類信息,就能使人類在沖突中做出更好的決策,從而最大限度地減少對平民的風險。

與此同時,任何 AI-DSS 的輸出都應在多個來源之間進行交叉核對,以防止信息有偏差或不準確。雖然這對沖突中的任何信息來源都是如此,但對AI-DSS 尤為重要;正如紅十字國際委員會先前所概述的那樣,由于系統的功能以及人類用戶與機器的交互方式,要核實輸出信息的準確性可能極其困難,有時甚至是不可能的。下文將進一步闡述這些方面。

系統局限性

最近關于人工智能發展的報道經常包括人工智能失敗的例子,有時是致命的。例如,軟件無法識別或錯誤識別膚色較深的人,推薦的旅行路線沒有考慮最新的路況,以及自動駕駛汽車造成死亡的例子。其中一些失誤是可以解釋的,但不可原諒,例如,因為其輸出所依據的數據有偏差、被破壞、中毒或根本不正確。這些系統仍然很容易被 "欺騙";可以使用一些技術來欺騙系統,使其對數據進行錯誤分類。例如,可以想象在沖突中使用對抗性技術來影響瞄準輔助系統的源代碼,使其將校車識別為敵方車輛,從而造成毀滅性后果。

隨著人工智能被用于執行更復雜的任務,特別是當多層分析(可能還有決策和判斷)不斷累積時,驗證最終輸出以及導致最終輸出的任何錯誤的來源就變得幾乎不可能。隨著系統越來越復雜,出現復合錯誤的可能性也越來越大--第一個算法建議中的一個微小不足會被反饋到第二個算法過程中并造成偏差,而第二個算法過程又會反饋到第三個算法過程中,依此類推。

因此,人工智能系統經常表現出用戶或開發者無法解釋的行為,即使經過大量的事后分析也是如此。一項針對備受矚目的大型語言模型 GPT-4 的研究發現,三個月后,該模型解決數學問題的能力從 83.6% 銳減至 35.2%,令人費解。不可預測的行為也可以通過強化學習產生,在強化學習中,機器已被證明能夠非常有效地采用和隱藏不可預見的行為,有時甚至是負面行為,從而戰勝或超越人類:無論是通過撒謊贏得談判,還是通過走捷徑擊敗電腦游戲。

人類與機器互動面臨的挑戰

AI-DSS 不會 "做出 "決定。不過,它們確實會直接影響人類的決策,而且往往影響很大,其中包括人類在與機器交互時的認知局限性和傾向性。

例如,"自動化偏差 "指的是人類傾向于不批判性地質疑系統的輸出,或搜索矛盾的信息--尤其是在時間緊迫的情況下。在醫療保健等其他領域已經觀察到了這種情況,經驗豐富的放射科醫生的診斷準確性受到了人工智能錯誤輸出的不利影響。

在醫療領域,不準確的診斷可能是致命的。同樣,在武裝沖突中,過度信任也會帶來致命后果。2003 年,美國的 "愛國者 "防御系統兩次向友軍聯軍飛機開火,原因是這些飛機被誤認為是攻擊導彈。在隨后的調查中,發現的主要缺陷之一是 "操作員接受了信任系統軟件的培訓"。

這些運作方式,再加上人機互動的這些特點,有可能增加結果偏離人類決策者意圖的可能性。在戰爭中,這可能導致意外升級,無論如何都會增加平民和受保護人員的風險。

節奏

人工智能在軍事上被吹捧的一個優勢是,它能讓用戶的決策節奏快于對手。節奏的加快往往會給平民帶來額外的風險,這就是為什么要采用 "戰術忍耐 "等降低節奏的技術來減少平民傷亡。放慢決策節奏,包括為決策提供信息的過程和評估,可以讓系統和用戶有額外的時間:

  • 看到更多
  • 了解更多;以及
  • 制定更多選擇。 重要的是,在整個決策鏈中都是如此,而不僅僅是在最后的 "決策點"。因此,聲稱 AI-DSS 將加快最終決定是否 "扣動扳機 "的耗時步驟,從而實際上為戰術忍耐帶來更多時間的說法,有可能過度簡化當代沖突中的目標選擇和武力執行過程。

額外的時間讓你看到更多

2021 年 8 月 29 日,在喀布爾大撤退期間,無人機對喀布爾進行了臭名昭著的空襲,造成 10 名平民死亡,中央司令部指揮官將這次空襲歸咎于 "我們沒有多余的時間來分析生活模式和做其他一些事情"。

"生活模式"分析是一些軍隊對平民和戰斗人員的存在和密度、他們的時間表、在考慮攻擊的地區內和周圍的移動模式等進行評估的描述。這是減少平民傷害的重要方法。然而,對生活模式的評估只能實時進行--平民創造這種模式需要時間--無法加快。

試圖根據歷史趨勢預測未來行為的做法無法顧及當前情況。在這個例子中,回顧舊的情報資料,特別是喀布爾的全動態視頻,并不能反映出由于塔利班接管和正在進行的疏散工作而發生的形勢和行為變化。

正如預防平民傷亡指南所解釋的那樣,"等待和觀察的時間越長,你就會對發生的事情了解得越多,也就能更好地做出使用致命或非致命手段的決定",或者正如拿破侖所說的那樣 "慢慢給我穿衣服,我趕時間"--有時,刻意為之才能達到最佳效果。

額外的時間可以讓用戶理解更多

放慢決策速度的另一個原因是,人的理解能力,尤其是對復雜和混亂情況的理解能力,需要時間來培養,也需要時間來斟酌適當的應對措施。時間越少,人理解局勢的能力就越弱。軍事規劃流程旨在讓指揮官和參謀人員有時間考慮作戰環境、對手、友軍和平民,以及所考慮的行動方案的利弊。正如德懷特-D-艾森豪威爾將軍所解釋的,"在準備戰斗的過程中,我總是發現計劃是無用的,但規劃是不可或缺的"。

當人類決策者考慮由 AI-DSS 生成或 "推薦 "的行動方案時,這一點就會產生影響,因為相對于對手而言,AI-DSS 加快行動節奏的能力可能是被利用的最主要原因。如果人類計劃人員沒有經歷或甚至完全不了解 AI-DSS 提出的計劃的制定過程,那么他對局勢、各種影響因素和相關人員的了解可能就會很有限。 事實上,人們已經注意到,使用自動輔助工具會降低人類用戶的警覺性,損害他們保持態勢感知的能力。這一點應從如何影響遵守國際人道主義法義務的角度加以考慮;盡一切可能核查目標的義務表明,需要最大限度地利用現有情報、監視和偵察資產,以獲得在當時情況下盡可能全面的態勢感知。

更多時間可讓用戶做出更多選擇

除了能讓指揮官看到和了解更多情況外,額外的時間還能讓指揮官制定戰術備選方案,包括決定不使用武力或緩和局勢。額外的時間可以讓其他單元和平臺脫離接觸、重新定位、重新補給、計劃和準備協助即將到來的行動。這為指揮官提供了更多選擇,包括可更好地減少平民傷害的替代計劃。額外的時間可能允許采取額外的緩解措施,如發布警告,從平民的角度來看,這也允許他們實施應對機制,如躲避、重新補給食物和水或撤離。

正如軍事規劃理論中的一個例子所解釋的那樣,"如果時間充裕,而且更快采取行動也沒有好處,那么就沒有什么借口不花時間進行充分規劃"。正如北約的《保護平民手冊》所回顧的那樣,"如果有時間按照國際人道主義法的原則對部隊或目標進行蓄意規劃、區分和精確瞄準,那么CIVCAS[平民傷亡]的可能性就會大大降低"。

結論

"戰爭是混亂的、致命的,從根本上說是人類的努力。它是人與人之間的意志沖突。所有戰爭本質上都是為了改變人類的行為,每一方都試圖通過武力改變另一方的行為"。"戰爭源于人類的分歧,在人類群體之間展開,由人類控制,由人類結束,而在戰爭結束后,人類又必須共存。最重要的是,沖突中的苦難由人類承擔。

這一現實,乃至國際人道主義法本身,都要求在武裝沖突中開發和使用人工智能時采取 "以人為本 "的方法--努力在本已不人道的活動中維護人性。這種方法至少有兩個關鍵方面:(1) 關注可能受影響的人;(2) 關注使用或下令使用人工智能的人的義務和責任。

在研究可能受影響的人時,不僅要考慮在使用 AI-DSS 獲取軍事優勢時減少對平民的風險,還要考慮專門為保護平民的目標設計和使用這類工具的可能性。在這方面已經提出的可能性包括識別、跟蹤和提醒部隊注意平民人口存在的工具,或識別在武裝沖突中表明受保護地位的特殊標志的工具(見這里和這里)。

確保人類能夠履行其在國際人道主義法下的義務意味著 AI-DSS 應為人類決策提供信息,但不能取代人類對武裝沖突中人們的生命和尊嚴構成風險的判斷。在自主武器系統方面,各國已廣泛認識到這一點(例如,見此處、此處和此處)。遵守國際人道主義法的責任在于個人及其指揮官,而非計算機。正如美國國防部《戰爭法手冊》所述:"戰爭法并不要求武器做出法律決定......相反,必須遵守戰爭法的是人。中國在《新一代人工智能倫理規范》中更普遍地強調了這一點,堅持 "人是最終的責任主體"。

關于 AI-DSS 必然會加強平民保護和遵守國際人道主義法的說法必須受到嚴格質疑,并根據這些考慮因素進行衡量,同時考慮到我們對系統局限性、人機互動以及行動節奏加快的影響的了解。

參考來源:International Committee of the Red Cross

付費5元查看完整內容

人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。

人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。

電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。

將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。

在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。

此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。

人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。

不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。

最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。

最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。

付費5元查看完整內容

美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。

人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。

陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。

負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。

伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。

他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。

伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。

陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。

巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。

她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。

伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。

陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。

根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。

"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。

融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。

麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。

除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。

戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。

他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"

他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。

McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。

不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。

他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"

巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"

伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。

他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?

他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。

伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。

參考來源:NDIA網站;作者:Josh Luckenbaugh

付費5元查看完整內容

雷達和電子戰(EW)等軍事應用測試和測量系統的設計人員正在加緊使用人工智能(AI)解決方案,以便更好地測試認知功能。同時,現代數字架構的采用也推動了軍事測試需求的增長。

人工智能(AI)和機器學習(ML)工具正在進入國防系統的幾乎每一個領域,從制造、雷達系統開發、航空電子設備到軟件開發和測試測量系統。

NI 公司(德克薩斯州奧斯汀)航空航天、國防與政府研究與原型開發解決方案營銷經理 Jeremy Twaits 說:"人工智能不僅影響測試系統本身的能力,還影響我們的測試方式。"人工智能使系統更具適應性,其行為會根據訓練數據集發生變化。有了人工智能,工程師必須了解系統性能的界限,并使用測試方法來滿足系統部署時可能遇到的最關鍵和最可能的情況。

人工智能工具還能在電子戰系統中實現認知功能。羅德與施瓦茨公司(Rohde & Schwarz,馬里蘭州哥倫比亞市)航空航天與國防市場部雷達與 EW(電子戰)全球市場部門經理 Tim Fountain 說:"通過為客戶配備工具,提供高帶寬、長時間射頻記錄和回放系統,用于在操作相關的射頻環境中訓練認知系統,從而幫助客戶交付支持 AI/ML 的系統"。

他繼續說:"此外,認知系統還可用于提取和分類 ELINT(電子情報)接收器捕獲的寬帶數據中的新型發射器。我們的客戶一再告訴我們,他們面臨的一個挑戰是,他們并不缺少來自采集活動的數據,但對這些信號進行標記、分類、排序和地理定位仍然是一項人工任務,由于時間和預算壓力,分析人員往往會忽略這項任務"。

軍事用戶對數據量的要求只增不減,這給系統設計人員和系統測試人員帶來了更大的壓力。

Keysight 航空航天/國防和政府解決方案集團(加利福尼亞州圣克拉拉市)總經理 Greg Patschke 說:"隨著高速捕獲技術的發展,我們能夠收集的數據量正以指數級速度增長。這些大型數據集帶來了分析信息和得出結果的挑戰。目前,我們正在使用無監督機器學習工具來加快洞察之路。我們可以使用智能算法來識別感興趣的信號,對信息進行分類,并識別數據中的模式和異常。利用這項技術為我們打開了一扇通往全新數據分析世界的大門,而這在以前是不可行的"。

由于系統的復雜性,在定義測試場景的同時,通過人工智能系統實現適應性將至關重要。

Twaits指出:"幾乎不可能在每一種可能的情況下進行測試,但業界必須定義關鍵的測試場景和模型。"由于真正測試和信任人工智能系統的動態性和挑戰性,測試平臺必須具備適應性,以應對未來的測試場景和要求。例如,NI 的 COTS(現成商用)硬件可以與 MathWorks 的軟件工具(如深度學習工具箱)相連接。NI 和 MathWorks 合作展示了如何利用軟件定義無線電 (SDR) 對訓練有素的神經網絡進行空中測試和評估,以對雷達和 5G 新無線電信號進行分類。

在軟件中定義測試功能

人工智能在測試解決方案中的應用得益于在軟件中植入測試和測量系統功能的能力。

Patschke 說:"在測試和測量行業,不斷需要改進測量軟件的功能。EW 測試的專業性往往要求軟件具有一定程度的創新性和靈活性,而這在其他行業通常是看不到的。例如,與雷達/預警機有關的到達角(AOA)測試需要軟件和硬件的無縫配對,以適當應用實時運動學并準確計算 AOA 結果"。

他繼續說:"幾年前,[測試]軟件還不具備這種功能,但隨著客戶要求和需求的變化,像 Keysight 這樣的公司已經進行了調整,以滿足這些需求。客戶要求系統具有靈活性,以便在新的挑戰出現時滿足他們的需求。滿足這些需求的唯一方法就是不斷升級我們的軟件,盡可能增加新的功能,這樣就可以不斷地將硬件重新用于多種用途"。

對標準化和快速周轉的需求也需要更多的軟件功能。

Fountain 說:"客戶告訴 R&S 最緊迫的問題是,他們需要快速、可驗證和可重復的測量,而且通常是基于標準的測量。"客戶通常沒有時間或內部專業知識來開發特定的測量功能,因此可能會依賴供應商將該測量功能作為附加功能提供,或者在某些情況下使用事實上的行業工具集(如 Matlab 和/或 Simlink)來支持快速軟件/硬件功能,特別是隨著 FPGA(現場可編程門陣列)和 GPU(圖形處理器)在測量數據流中變得越來越普遍。(圖 1)。

[圖1 ? 羅德與施瓦茨公司提供集成記錄、分析和回放系統(IRAPS)。IRAPS可用于需要寬帶寬、長時間射頻記錄和回放的實驗室和靶場射頻記錄和回放應用,如雷達測試和靶場電子戰(EW)效果評估。]

NI 雷達/EW 業務開發經理 Haydn Nelson 說:"在軟件中定義測試系統是整個航空航天工業趨勢的體現,通常被稱為基于模型的系統工程。"推動系統級模型和要求的標準化使軟件成為定義自動測試系統不可或缺的一部分。

Nelson 繼續說:"對于雷達和電子戰來說,由于雷達的多任務性質和電子戰的保密性質,這具有挑戰性。定義、開發、評估和部署新方法和技術是一個復雜的過程。隨著威脅的不斷發展,用戶需要更快地獲得新系統,而測試和評估流程不能阻礙這一進程。軟件定義的測試系統對于在保持系統能力和性能敏感性的同時滿足速度要求至關重要。

對更多實驗室測試的需求也在推動軟件定義測試系統的發展。Nelson 說:"我們看到的一個具體要求是,能夠在實驗室中以現實的方式進行更多測試,而無需面對固定和鎖定測試系統的挑戰。在公開范圍測試之前,測試的次數越多,新方法或新技術獲得最終用戶信任的信心就越大。共享數據和證明能力與開發能力本身同樣重要。"

雷達/預警要求

跨越多個領域的復雜對抗性威脅對雷達和預警系統的性能提出了更高的要求,從而給測試系統設計人員帶來了更大的壓力,要求他們提供準確、高效的解決方案。

"總體而言,趨勢是不斷提高測量精度和降低相位噪聲,"Fountain 說。"精度和相位噪聲直接關系到描述雷達性能的能力。在電子戰方面,我們看到,在擁擠和有爭議的作戰環境的推動下,高度復雜的電磁場景正朝著更高保真模擬的方向發展。"

雷達和預警系統的數字架構要求和現代化努力也要求測試系統具有多功能性。

NI 的 Twaits 說:"從高層次上講,測試和評估的要求是由采用現代數字架構驅動的,這些架構要求在單個系統中進行功能、參數和系統級測試,以及分割數字和射頻系統以進行獨立測試的方法。"此外,許多傳統雷達和預警系統正在進行現代化改造,而傳統的測試平臺靈活性太差,無法滿足新系統功能的測試要求。現代化不會帶來無限的測試預算。新系統和升級要不斷平衡預算和時間交付壓力所帶來的限制,而適應不斷變化的要求本身就是一種要求"。

帶寬需求也對測試系統提出了更高的要求。"從技術上講,在電磁頻譜戰(EMSO)領域,實戰系統正朝著更寬的帶寬、更高的頻率、更大的頻率靈活性和更強的抗威脅能力方向發展。因此,[測試和測量]設備必須能夠生成和分析具有適當規格的波形,快速調整,并創建逼真的場景,在接近真實的運行條件下對被測設備施加壓力。"

測試系統還能在系統部署前的設計過程中盡早發現缺陷,從而降低長期生命周期成本。

Twaits說:"按時、按預算交付的一個關鍵方面是制定測試策略,以便在設計過程中及早發現缺陷。露天靶場測試成本高昂,對于測試早期設計既不可行也不實際。例如,在雷達測試中,客戶正在尋找硬件在環系統,該系統可將真實目標注入到正在測試的雷達系統中。這使他們能夠盡早、頻繁地測試系統,盡早消除問題,并針對各種情況對雷達進行評估"。

NI 提供的雷達目標生成 (RTG) 軟件使客戶能夠將 PXI 射頻矢量信號收發器 (VST) 作為閉環實時雷達目標生成器來操作。它為工程師提供了一個單一模塊,既可作為標準雷達參數測量設備,也可作為 RTG,具有很強的能力和靈活性,適合最終用戶的調整。通過完全開放的列表模式,用戶可以定義多達 1000 萬個測試目標,以硬件速度進行排序,從而以在露天靶場上無法實現的方式刺激雷達。

電子戰系統的作用是對抗和探測復雜的敵對威脅,而測試系統的作用則是使作戰人員不僅能高效而且能安全地利用這些系統。

Patschke 指出:"EW 測試的核心是確保人員和設備都做好應對各種電磁威脅的準備,從而保證部隊的安全。隨著 EW 測試環境越來越先進,客戶需要生成盡可能逼真的模擬。要做到這一點,就必須生成能模擬現實條件的高保真動態場景。過去,這需要大量的設備,而這些設備在使用中往往缺乏通用性。現在,客戶不僅希望他們的設備具有更高水平的能力,如更寬的帶寬和更多的輸出端口,而且還希望它能以更緊湊的尺寸提供更大的靈活性。Keysight 推出了包括最新 M9484C 矢量信號發生器在內的可擴展、開放式架構 EW 測試和評估產品組合,滿足了客戶的這些期望。"(圖 2)

[圖2 ? Keysight 的 M9484C 矢量信號發生器是一個四端口信號源,還能產生脈沖對脈沖輸出。這種單一信號發生器能夠取代四個老式信號源]。

Fountain 對發展趨勢的最后評論是:"人們希望從露天靶場測試轉向封閉實驗室,這主要是由于露天測試的復雜性、成本以及測試產生的射頻輻射可能被不受歡迎的聽眾截獲"。

開放架構/MOSA 計劃

Fountain 說,在測試和測量層面,他并沒有看到這些計劃有多少活動。"測量系統在操作層面有一些利基應用,模塊化架構(如 MOSA[模塊化開放系統方法]和 SOSA[傳感器開放系統架構])的優勢和附加成本將適用于這些應用,但在大多數情況下,測試和測量設備是在實驗室中,需要一個可控的環境來提供高度的測量精度。"

Nelson說:"從許多方面來看,SOSA等標準架構在嵌入式設計中采用的理念與NI在模塊化PXI平臺測試和測量設計中采用的理念非常相似:制造模塊化、靈活和可互操作的系統。模塊化開放式架構的這三個目標是未來軍用嵌入式系統取得成功的關鍵,使系統能夠在今天設計,并在明天進行低成本升級。NI 的測試和測量方法與這一目標不謀而合。擁有模塊化、可擴展、靈活和可升級的嵌入式系統意味著測試系統也必須是模塊化、可擴展、靈活和可升級的,以適應不斷變化的要求、能力和接口。我們相信,與開放式架構計劃的模塊化方向一致的模塊化測試系統將有助于實現這一新嵌入式系統理念的承諾。"

Keysight 的 Patschke 說:"投資新產品的客戶希望確保其傳統設備和系統能夠與升級后的平臺協同運行。"這不僅是一項節約成本的措施,而且還能通過延長舊產品的使用壽命來減少浪費,同時使整個系統保持最新狀態。開放式架構平臺將可持續發展作為優先事項,同時又不犧牲升級能力。Keysight 在設計下一代系統時非常重視開放式架構的實施。"

展望未來

人工智能和軟件定義的測試系統正在為現在以及未來的雷達和 EW 測試系統的更多能力鋪平道路,例如軟件定義雷達、頻譜共享、數字孿生等領域。

Patschke說:"未來美國國防部(DoD)客戶的系統測試可能發展的一個途徑就是數字孿生技術的進步。"這些系統利用基于模型的系統工程(MBSE)方法生成數字化的真實測試場景,這些場景通常會考慮到外部變量,而以前的虛擬測試方法無法做到這一點。理論上,'數字孿生'概念可以將大多數(如果不是全部)物理系統工程活動轉換為虛擬活動。在進行物理測試不切實際、真實世界的效果難以再現的情況下,"數字孿生 "有可能增加廣泛的價值。隨著客戶尋求更可靠、更具成本效益的測試手段,數字孿生選擇可能會變得更具吸引力。

Fountain 說,未來幾年有四個關鍵領域將推動測試和測量技術的發展:

  • 頻譜共享: 頻譜帶正被重新部署到 CBRS(無線網絡)等商業應用中,這就要求進行更全面、更精確的共存測試。
  • 軟件定義雷達: 從模擬脈沖雷達到全數字調制雷達(每個脈沖都可以調制)的轉變已經實現了雷達與合作資產之間的通信。但這不僅僅是雷達和通信,還包括 EW,包括 EP 和 EA,以及集成到單一平臺的[軍事通信]。
  • 量子傳感和量子雷達仍處于早期階段,但如果這些技術能在 "實戰 "中發揮作用,它們將改變沖突的根本結構。
  • 從傳統的基于脈沖描述符字(PDW)的環境生成轉向基于高保真同相(IQ)的系統,這推動了對更高帶寬射頻生成能力的需求。

雷達和預警系統對靈活性和多功能性的需求也成為測試和測量需求的一個特點。

"納爾遜說:"我們已經看到許多要求測試系統像瑞士軍刀一樣的需求:客戶希望測試設備能在單一系統中完成所有功能。

"我們經常收到這樣的請求:要求配置的系統在進行雷達目標生成等系統級測試的同時,還能進行參數測試,并能進行射頻記錄和回放。這些要求結合在一起,就很難在保持可接受的尺寸、重量和功率的同時,以具有成本效益的方式完成測試。只有采用模塊化系統,在封閉的特定功能與使用開放軟件擴展功能之間取得平衡,才能做到這一點。我們看到的趨勢是,現代測試系統必須像它們所測試的系統一樣具有多功能。

付費5元查看完整內容

在技術飛速發展的時代,戰爭的面貌正在發生重大轉變。人工智能(AI)與軍事系統的結合正在徹底改變我們進行戰爭的方式。

本文將深入探討人工智能在戰爭中的迷人世界,重點關注認知戰爭的概念以及人工智能在塑造未來戰斗中的作用。

認知戰爭: 新領域

認知戰爭代表著軍事行動模式的轉變。它戰略性地利用人工智能和機器學習來影響對手的認知過程。

其目的是操縱決策過程,制造混亂,最終獲得戰略優勢。這種方法利用人工智能的力量來增強人的能力,因此越來越被認為是現代戰爭中的有力工具。

認知戰爭最顯著的實例之一是國防科技初創公司 Anduril 開發的 "幽靈 4 "無人機。這架無人機是人工智能融入軍事系統的見證。它配備了人工智能,可以在地面單個操作員的控制下執行各種偵察任務。它利用機器學習來分析圖像和識別目標,展示了人工智能在增強軍事能力方面的潛力。

盡管如此,重要的是要以平衡的視角來看待這一發展。雖然幽靈 4 無人機代表了軍事技術的重大進步,但它也提出了幾個問題。

在戰爭中使用人工智能,尤其是能夠做出決策的自主系統,會帶來新的復雜性和不可預測性。如果這些系統出現故障或被對手利用,就有可能產生意想不到的后果。

此外,在戰爭中使用人工智能所涉及的倫理問題也是一個一直爭論不休的話題。機器在戰場上做出生死攸關決定的前景是一個有爭議的問題。雖然人工智能通過接管危險任務有可能減少人員傷亡,但缺乏人類判斷力和責任感是一個主要問題。

最后,在認知戰爭中使用人工智能有可能使沖突升級。操縱對手決策過程的能力可能導致誤判和誤解,增加沖突風險。因此,制定明確的規則和條例來規范人工智能在戰爭中的使用以降低這些風險至關重要。

數字化、透明戰爭時代

2023 年標志著數字化、透明化戰爭的到來。烏克蘭戰爭就是這一新時代的明顯例證。由于衛星、數字痕跡和用戶在社交媒體上生成的內容提供了全面的透明度,全世界都看著俄羅斯在烏克蘭邊境集結兵力。在這個時代,再也不可能用陸海空三軍偷襲另一個國家了。這些兵力造成的死亡和破壞也無法掩蓋。這種透明度迫使兵力調整戰略,以更加分散的方式移動和機動。

精確武器的影響

精確武器的出現又一次改變了戰爭的游戲規則。這些武器可以用一枚成本效益高的導彈摧毀價值數百萬的平臺。這一現實正在改變軍隊、海軍和空軍的組織、裝備和作戰方式。

在烏克蘭沖突中,精確武器成功打擊了裝甲車輛和飛機,凸顯了其有效性。現在的挑戰是降低這些武器的成本和復雜性,各國正在緊急開展這項工作。

未來: 人工智能驅動的變革

人工智能與戰爭的結合必將推動國家對抗沖突的方式發生深刻變革。機器人技術、自主性、連通性、安全云中的數據以及人工智能的進步將導致武裝力量迅速發展為有人、無人和自主能力的團隊。

這一轉變的意義將不亞于 Airbnb 和 Uber 等數字平臺對各自行業的影響。然而,盡管發生了這種轉變,戰爭的本質將保持不變--意志的較量,理性、情感和機遇的混合

即將結束...

我們深入研究了人工智能與戰爭,發現自己正站在一個新時代的懸崖邊上。將人工智能融入軍事系統的確是一把雙刃劍。一方面,它有望徹底改變戰爭,增強軍事能力,并有可能減少人員傷亡。另一方面,它也提出了深刻的倫理道德問題,作為一個社會,我們必須努力解決這些問題。

例如,在認知戰爭中使用人工智能會帶來機器做出生死攸關決定的幽靈。我們能把如此關鍵的決策交給算法嗎?在自主系統主導的領域,我們如何確保問責制?

這些問題不僅是技術問題,更是深刻的哲學問題,涉及我們的價值觀和原則。

此外,人工智能在戰爭中的潛在濫用也是一個重大問題。如果落入壞人之手,這些技術可能會被用來加劇沖突、操縱輿論或侵犯人權。

我們如何防止這種濫用?

我們如何在利用人工智能的好處和防范其潛在風險之間取得平衡?

關鍵是要以謹慎和負責的態度對待它。我們必須促進有關這些問題的公開對話,鼓勵不同的觀點和嚴謹的辯論。

只有通過這樣的討論,我們才有希望以負責任和合乎道德的方式在戰爭中利用人工智能的力量。

付費5元查看完整內容

機器學習是現代戰爭系統的關鍵組成部分。本文探討了人工智能的 7 個關鍵軍事應用。

機器學習已成為現代戰爭的重要組成部分,也是我(Nicholas Abell)作為陸軍退伍軍人和數據科學家的主要興趣點。與傳統系統相比,配備人工智能/機器學習的軍事系統能夠更有效地處理大量數據。此外,人工智能由于其固有的計算和決策能力,提高了作戰系統的自我控制、自我調節和自我驅動能力。

人工智能/機器學習幾乎被部署在所有軍事應用中,軍事研究機構增加研發資金有望進一步推動人工智能驅動系統在軍事領域的應用。

例如,美國國防部 (DoD) 的國防高級研究計劃局 (DARPA) 正在資助一種機器人潛艇系統的開發,該系統預計將用于從探測水下水雷到參與反潛行動的各種應用。此外,美國國防部在 2017 財年在人工智能、大數據和云計算方面的總體支出為 74 億美元。預計到 2025 年,軍事 ML 解決方案的市場規模將達到 190 億美元。

以下是機器學習將在未來幾年證明其重要性的七種主要軍事應用。

1. 作戰平臺

來自全球不同國家的國防軍隊正在將人工智能嵌入陸地、海軍、空中和太空平臺上使用的武器和其他系統中。

在基于這些平臺的系統中使用人工智能,可以開發出更少依賴人工輸入的高效作戰系統。它還增加了協同作用,提高了作戰系統的性能,同時需要更少的維護。人工智能還有望使自主和高速武器能夠進行協作攻擊。

2. 網絡安全

軍事系統通常容易受到網絡攻擊,這可能導致機密軍事信息丟失和軍事系統損壞。然而,配備人工智能的系統可以自主保護網絡、計算機、程序和數據免受任何未經授權的訪問。

此外,支持人工智能的網絡安全系統可以記錄網絡攻擊的模式,并開發反擊工具來應對它們。

3. 物流運輸

人工智能有望在軍事后勤和運輸中發揮關鍵作用。貨物、彈藥、武器和部隊的有效運輸是成功軍事行動的重要組成部分。

將人工智能與軍事運輸相結合可以降低運輸成本并減少人力工作負荷。它還使軍用艦隊能夠輕松檢測異常并快速預測組件故障。最近,美國陸軍與 IBM 合作,使用其 Watson 人工智能平臺來幫助預先識別 Stryker 戰車的維護問題。

4. 目標識別

正在開發人工智能技術以提高復雜戰斗環境中目標識別的準確性。這些技術使國防軍隊能夠通過分析報告、文檔、新聞提要和其他形式的非結構化信息來深入了解潛在的作戰領域。此外,目標識別系統中的人工智能提高了這些系統識別目標位置的能力。

支持人工智能的目標識別系統能力包括基于概率的敵人行為預測、天氣和環境條件匯總、潛在供應線瓶頸或漏洞的預測和標記、任務方法評估以及建議的緩解策略。機器學習還用于從獲得的數據中學習、跟蹤和發現目標。

例如,DARPA 的競爭環境中的目標識別和適應 (TRACE) 計劃使用機器學習技術在合成孔徑雷達 (SAR) 圖像的幫助下自動定位和識別目標。

5. 戰場醫療

在戰區,人工智能可以與機器人手術系統 (RSS) 和機器人地面平臺 (RGP) 集成,以提供遠程手術支持和疏散活動。美國尤其參與了 RSS、RGP 和其他各種用于戰場醫療保健的系統開發。在困難條件下,配備人工智能的系統可以挖掘士兵的病歷并協助進行復雜的診斷。

例如,IBM 的 Watson 研究團隊與美國退伍軍人管理局合作開發了一種稱為電子病歷分析器 (EMRA) 的臨床推理原型。這項初步技術旨在使用機器學習技術來處理患者的電子病歷,并自動識別和排列他們最嚴重的健康問題。

6. 戰斗模擬與訓練

模擬與訓練是一個多學科領域,它將系統工程、軟件工程和計算機科學結合起來構建計算機模型,使士兵熟悉在軍事行動中部署的各種作戰系統。美國正在越來越多地投資于模擬和訓練應用。

美國海軍和陸軍都在進行戰爭分析,啟動了幾個傳感器模擬程序項目。美國海軍已經招募了 Leidos、SAIC、AECOM 和 Orbital ATK 等公司來支持他們的計劃,而美國陸軍的計劃得到了包括 SAIC、CACI、Torch Technologies 和 Millennium Engineering 在內的公司的支持。

7. 威脅監控和態勢感知

威脅監控和態勢感知在很大程度上依賴于情報、監視和偵察 (ISR) 工作。ISR 行動用于獲取和處理信息以支持一系列軍事活動。

用于執行 ISR 任務的無人系統既可以遠程操作,也可以按照預先定義的路線發送。為這些系統配備人工智能有助于防御人員進行威脅監控,從而提高他們的態勢感知能力。

具有集成 AI 的無人駕駛飛行器 (UAV) - 也稱為無人機 - 可以巡邏邊境地區,識別潛在威脅,并將有關這些威脅的信息傳輸給響應團隊。因此,使用無人機可以加強軍事基地的安全,并提高軍事人員在戰斗中或偏遠地區的安全性和效率。

結論

人工智能在軍事技術硬件和軟件的大規模采用,向我們展示了現代戰爭中令人難以置信和可怕的范式轉變。毫不奇怪,世界上最大的軍隊比其他任何事情都更加關注這項技術,而這場技術競賽的獲勝者可能會比美國在研制原子彈后擁有更多的全球影響力。 (作者:Nicholas Abell,美國陸軍退伍軍人)

付費5元查看完整內容
北京阿比特科技有限公司