雷達和電子戰(EW)等軍事應用測試和測量系統的設計人員正在加緊使用人工智能(AI)解決方案,以便更好地測試認知功能。同時,現代數字架構的采用也推動了軍事測試需求的增長。
人工智能(AI)和機器學習(ML)工具正在進入國防系統的幾乎每一個領域,從制造、雷達系統開發、航空電子設備到軟件開發和測試測量系統。
NI 公司(德克薩斯州奧斯汀)航空航天、國防與政府研究與原型開發解決方案營銷經理 Jeremy Twaits 說:"人工智能不僅影響測試系統本身的能力,還影響我們的測試方式。"人工智能使系統更具適應性,其行為會根據訓練數據集發生變化。有了人工智能,工程師必須了解系統性能的界限,并使用測試方法來滿足系統部署時可能遇到的最關鍵和最可能的情況。
人工智能工具還能在電子戰系統中實現認知功能。羅德與施瓦茨公司(Rohde & Schwarz,馬里蘭州哥倫比亞市)航空航天與國防市場部雷達與 EW(電子戰)全球市場部門經理 Tim Fountain 說:"通過為客戶配備工具,提供高帶寬、長時間射頻記錄和回放系統,用于在操作相關的射頻環境中訓練認知系統,從而幫助客戶交付支持 AI/ML 的系統"。
他繼續說:"此外,認知系統還可用于提取和分類 ELINT(電子情報)接收器捕獲的寬帶數據中的新型發射器。我們的客戶一再告訴我們,他們面臨的一個挑戰是,他們并不缺少來自采集活動的數據,但對這些信號進行標記、分類、排序和地理定位仍然是一項人工任務,由于時間和預算壓力,分析人員往往會忽略這項任務"。
軍事用戶對數據量的要求只增不減,這給系統設計人員和系統測試人員帶來了更大的壓力。
Keysight 航空航天/國防和政府解決方案集團(加利福尼亞州圣克拉拉市)總經理 Greg Patschke 說:"隨著高速捕獲技術的發展,我們能夠收集的數據量正以指數級速度增長。這些大型數據集帶來了分析信息和得出結果的挑戰。目前,我們正在使用無監督機器學習工具來加快洞察之路。我們可以使用智能算法來識別感興趣的信號,對信息進行分類,并識別數據中的模式和異常。利用這項技術為我們打開了一扇通往全新數據分析世界的大門,而這在以前是不可行的"。
由于系統的復雜性,在定義測試場景的同時,通過人工智能系統實現適應性將至關重要。
Twaits指出:"幾乎不可能在每一種可能的情況下進行測試,但業界必須定義關鍵的測試場景和模型。"由于真正測試和信任人工智能系統的動態性和挑戰性,測試平臺必須具備適應性,以應對未來的測試場景和要求。例如,NI 的 COTS(現成商用)硬件可以與 MathWorks 的軟件工具(如深度學習工具箱)相連接。NI 和 MathWorks 合作展示了如何利用軟件定義無線電 (SDR) 對訓練有素的神經網絡進行空中測試和評估,以對雷達和 5G 新無線電信號進行分類。
人工智能在測試解決方案中的應用得益于在軟件中植入測試和測量系統功能的能力。
Patschke 說:"在測試和測量行業,不斷需要改進測量軟件的功能。EW 測試的專業性往往要求軟件具有一定程度的創新性和靈活性,而這在其他行業通常是看不到的。例如,與雷達/預警機有關的到達角(AOA)測試需要軟件和硬件的無縫配對,以適當應用實時運動學并準確計算 AOA 結果"。
他繼續說:"幾年前,[測試]軟件還不具備這種功能,但隨著客戶要求和需求的變化,像 Keysight 這樣的公司已經進行了調整,以滿足這些需求。客戶要求系統具有靈活性,以便在新的挑戰出現時滿足他們的需求。滿足這些需求的唯一方法就是不斷升級我們的軟件,盡可能增加新的功能,這樣就可以不斷地將硬件重新用于多種用途"。
對標準化和快速周轉的需求也需要更多的軟件功能。
Fountain 說:"客戶告訴 R&S 最緊迫的問題是,他們需要快速、可驗證和可重復的測量,而且通常是基于標準的測量。"客戶通常沒有時間或內部專業知識來開發特定的測量功能,因此可能會依賴供應商將該測量功能作為附加功能提供,或者在某些情況下使用事實上的行業工具集(如 Matlab 和/或 Simlink)來支持快速軟件/硬件功能,特別是隨著 FPGA(現場可編程門陣列)和 GPU(圖形處理器)在測量數據流中變得越來越普遍。(圖 1)。
[圖1 ? 羅德與施瓦茨公司提供集成記錄、分析和回放系統(IRAPS)。IRAPS可用于需要寬帶寬、長時間射頻記錄和回放的實驗室和靶場射頻記錄和回放應用,如雷達測試和靶場電子戰(EW)效果評估。]
NI 雷達/EW 業務開發經理 Haydn Nelson 說:"在軟件中定義測試系統是整個航空航天工業趨勢的體現,通常被稱為基于模型的系統工程。"推動系統級模型和要求的標準化使軟件成為定義自動測試系統不可或缺的一部分。
Nelson 繼續說:"對于雷達和電子戰來說,由于雷達的多任務性質和電子戰的保密性質,這具有挑戰性。定義、開發、評估和部署新方法和技術是一個復雜的過程。隨著威脅的不斷發展,用戶需要更快地獲得新系統,而測試和評估流程不能阻礙這一進程。軟件定義的測試系統對于在保持系統能力和性能敏感性的同時滿足速度要求至關重要。
對更多實驗室測試的需求也在推動軟件定義測試系統的發展。Nelson 說:"我們看到的一個具體要求是,能夠在實驗室中以現實的方式進行更多測試,而無需面對固定和鎖定測試系統的挑戰。在公開范圍測試之前,測試的次數越多,新方法或新技術獲得最終用戶信任的信心就越大。共享數據和證明能力與開發能力本身同樣重要。"
跨越多個領域的復雜對抗性威脅對雷達和預警系統的性能提出了更高的要求,從而給測試系統設計人員帶來了更大的壓力,要求他們提供準確、高效的解決方案。
"總體而言,趨勢是不斷提高測量精度和降低相位噪聲,"Fountain 說。"精度和相位噪聲直接關系到描述雷達性能的能力。在電子戰方面,我們看到,在擁擠和有爭議的作戰環境的推動下,高度復雜的電磁場景正朝著更高保真模擬的方向發展。"
雷達和預警系統的數字架構要求和現代化努力也要求測試系統具有多功能性。
NI 的 Twaits 說:"從高層次上講,測試和評估的要求是由采用現代數字架構驅動的,這些架構要求在單個系統中進行功能、參數和系統級測試,以及分割數字和射頻系統以進行獨立測試的方法。"此外,許多傳統雷達和預警系統正在進行現代化改造,而傳統的測試平臺靈活性太差,無法滿足新系統功能的測試要求。現代化不會帶來無限的測試預算。新系統和升級要不斷平衡預算和時間交付壓力所帶來的限制,而適應不斷變化的要求本身就是一種要求"。
帶寬需求也對測試系統提出了更高的要求。"從技術上講,在電磁頻譜戰(EMSO)領域,實戰系統正朝著更寬的帶寬、更高的頻率、更大的頻率靈活性和更強的抗威脅能力方向發展。因此,[測試和測量]設備必須能夠生成和分析具有適當規格的波形,快速調整,并創建逼真的場景,在接近真實的運行條件下對被測設備施加壓力。"
測試系統還能在系統部署前的設計過程中盡早發現缺陷,從而降低長期生命周期成本。
Twaits說:"按時、按預算交付的一個關鍵方面是制定測試策略,以便在設計過程中及早發現缺陷。露天靶場測試成本高昂,對于測試早期設計既不可行也不實際。例如,在雷達測試中,客戶正在尋找硬件在環系統,該系統可將真實目標注入到正在測試的雷達系統中。這使他們能夠盡早、頻繁地測試系統,盡早消除問題,并針對各種情況對雷達進行評估"。
NI 提供的雷達目標生成 (RTG) 軟件使客戶能夠將 PXI 射頻矢量信號收發器 (VST) 作為閉環實時雷達目標生成器來操作。它為工程師提供了一個單一模塊,既可作為標準雷達參數測量設備,也可作為 RTG,具有很強的能力和靈活性,適合最終用戶的調整。通過完全開放的列表模式,用戶可以定義多達 1000 萬個測試目標,以硬件速度進行排序,從而以在露天靶場上無法實現的方式刺激雷達。
電子戰系統的作用是對抗和探測復雜的敵對威脅,而測試系統的作用則是使作戰人員不僅能高效而且能安全地利用這些系統。
Patschke 指出:"EW 測試的核心是確保人員和設備都做好應對各種電磁威脅的準備,從而保證部隊的安全。隨著 EW 測試環境越來越先進,客戶需要生成盡可能逼真的模擬。要做到這一點,就必須生成能模擬現實條件的高保真動態場景。過去,這需要大量的設備,而這些設備在使用中往往缺乏通用性。現在,客戶不僅希望他們的設備具有更高水平的能力,如更寬的帶寬和更多的輸出端口,而且還希望它能以更緊湊的尺寸提供更大的靈活性。Keysight 推出了包括最新 M9484C 矢量信號發生器在內的可擴展、開放式架構 EW 測試和評估產品組合,滿足了客戶的這些期望。"(圖 2)
[圖2 ? Keysight 的 M9484C 矢量信號發生器是一個四端口信號源,還能產生脈沖對脈沖輸出。這種單一信號發生器能夠取代四個老式信號源]。
Fountain 對發展趨勢的最后評論是:"人們希望從露天靶場測試轉向封閉實驗室,這主要是由于露天測試的復雜性、成本以及測試產生的射頻輻射可能被不受歡迎的聽眾截獲"。
Fountain 說,在測試和測量層面,他并沒有看到這些計劃有多少活動。"測量系統在操作層面有一些利基應用,模塊化架構(如 MOSA[模塊化開放系統方法]和 SOSA[傳感器開放系統架構])的優勢和附加成本將適用于這些應用,但在大多數情況下,測試和測量設備是在實驗室中,需要一個可控的環境來提供高度的測量精度。"
Nelson說:"從許多方面來看,SOSA等標準架構在嵌入式設計中采用的理念與NI在模塊化PXI平臺測試和測量設計中采用的理念非常相似:制造模塊化、靈活和可互操作的系統。模塊化開放式架構的這三個目標是未來軍用嵌入式系統取得成功的關鍵,使系統能夠在今天設計,并在明天進行低成本升級。NI 的測試和測量方法與這一目標不謀而合。擁有模塊化、可擴展、靈活和可升級的嵌入式系統意味著測試系統也必須是模塊化、可擴展、靈活和可升級的,以適應不斷變化的要求、能力和接口。我們相信,與開放式架構計劃的模塊化方向一致的模塊化測試系統將有助于實現這一新嵌入式系統理念的承諾。"
Keysight 的 Patschke 說:"投資新產品的客戶希望確保其傳統設備和系統能夠與升級后的平臺協同運行。"這不僅是一項節約成本的措施,而且還能通過延長舊產品的使用壽命來減少浪費,同時使整個系統保持最新狀態。開放式架構平臺將可持續發展作為優先事項,同時又不犧牲升級能力。Keysight 在設計下一代系統時非常重視開放式架構的實施。"
人工智能和軟件定義的測試系統正在為現在以及未來的雷達和 EW 測試系統的更多能力鋪平道路,例如軟件定義雷達、頻譜共享、數字孿生等領域。
Patschke說:"未來美國國防部(DoD)客戶的系統測試可能發展的一個途徑就是數字孿生技術的進步。"這些系統利用基于模型的系統工程(MBSE)方法生成數字化的真實測試場景,這些場景通常會考慮到外部變量,而以前的虛擬測試方法無法做到這一點。理論上,'數字孿生'概念可以將大多數(如果不是全部)物理系統工程活動轉換為虛擬活動。在進行物理測試不切實際、真實世界的效果難以再現的情況下,"數字孿生 "有可能增加廣泛的價值。隨著客戶尋求更可靠、更具成本效益的測試手段,數字孿生選擇可能會變得更具吸引力。
Fountain 說,未來幾年有四個關鍵領域將推動測試和測量技術的發展:
雷達和預警系統對靈活性和多功能性的需求也成為測試和測量需求的一個特點。
"納爾遜說:"我們已經看到許多要求測試系統像瑞士軍刀一樣的需求:客戶希望測試設備能在單一系統中完成所有功能。
"我們經常收到這樣的請求:要求配置的系統在進行雷達目標生成等系統級測試的同時,還能進行參數測試,并能進行射頻記錄和回放。這些要求結合在一起,就很難在保持可接受的尺寸、重量和功率的同時,以具有成本效益的方式完成測試。只有采用模塊化系統,在封閉的特定功能與使用開放軟件擴展功能之間取得平衡,才能做到這一點。我們看到的趨勢是,現代測試系統必須像它們所測試的系統一樣具有多功能。
人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。
人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。
電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。
將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。
在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。
此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。
人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。
不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。
最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。
最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。
美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。
人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。
陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。
負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。
伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。
他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。
伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。
陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。
巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。
她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。
伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。
陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。
根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。
"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。
融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。
麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。
除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。
戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。
他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"
他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。
McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。
不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。
他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"
巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"
伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。
他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?
他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。
伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。
參考來源:NDIA網站;作者:Josh Luckenbaugh
將人工智能(AI)融入軍事行動是一個持續討論和爭論的話題。在眾多人工智能應用中,像 OpenAI 的 GPT-4 這樣的大型語言模型(LLM)在自然語言處理、理解和生成方面展現出了前所未有的能力。本文探討了 LLMs 在軍事規劃革命中的潛力,并強調了它們帶來的挑戰和機遇。
過去幾年中,LLM 在人工智能研究領域取得了長足進步,展示了其理解上下文、生成連貫文本甚至翻譯語言的能力。這些模型給人留下了深刻印象,在新聞、客戶服務和科學研究等各個領域都得到了應用。
軍事規劃是一個復雜的過程,需要分析大量信息,如敵方能力、兵力和后勤。LLM 可以幫助軍事規劃人員快速處理和分析這些數據,簡化規劃流程,減少人為錯誤的可能性。在軍事規劃中使用 LLM 可以帶來以下好處:
1、改進決策: 通過分析歷史數據,LLMs 可以洞察各種戰略的潛在結果,幫助軍事規劃人員做出更明智的決策。此外,LLM 還能通過評估潛在對手的行為模式來預測其行動。
2、增強交流: LLMs 可以生成復雜數據集的自然語言摘要,使軍事人員之間更容易交流關鍵信息。這可以提高對態勢的認識,并做出更明智的決策。
3、有效分配資源: LLM 可以通過分析供應鏈數據和預測未來需求來優化軍事資源的分配。這有助于最大限度地減少浪費,確保資源用在最需要的地方。
4、定制培訓: LLM 可以根據每個士兵的需求和能力創建定制的訓練場景。這樣可以提高訓練效率,最大限度地發揮每個士兵的潛能。
5、士氣和心理健康支持: LLM 可以通過自然語言對話為士兵提供心理支持,協助進行壓力管理并解決心理健康問題。
盡管有諸多優勢,但在軍事規劃中實施 LLMs 還面臨一些挑戰和問題:
1、數據安全: 在軍事規劃中使用 LLM 需要處理高度敏感的信息。確保這些數據的安全性和保密性至關重要。軍事組織必須投資于強大的網絡安全措施,以保護其數據免遭未經授權的訪問和潛在泄漏。
2、道德考慮因素: 在軍事規劃中部署 LLM 會引發道德問題,即決策自動化程度可能會提高。隨著人工智能系統變得越來越復雜,人類決策與機器決策之間的界限可能會變得模糊,從而導致人們擔心在出現錯誤或失敗時的問責和責任問題。
3、技術局限性: 雖然 LLM 在自然語言理解方面取得了顯著進步,但它們也并非沒有局限性。這些模型有時會產生不準確或有偏見的結果,從而可能導致錯誤的決策。軍事組織必須認識到這些局限性,并確保人類的專業知識仍然是規劃過程中不可或缺的一部分。
4、對技術的依賴: 過度依賴 LLM 可能會導致人類分析能力下降和對技術的過度依賴。軍事規劃人員必須在利用 LLM 的力量與保持人類參與決策過程之間取得平衡。
軍事組織、學術界和私營部門之間的合作有助于應對軍事規劃中與 LLM 相關的挑戰。以下是一些潛在的合作途徑:
1、分享最佳實踐: 軍事組織可以相互學習在規劃過程中實施 Lating LLMs 的經驗。分享最佳實踐有助于找出潛在的隱患,確保最有效地利用這些先進的人工智能工具。
2、聯合研究計劃: 軍事組織、學術界和私營部門之間的合作研究計劃可以推動 LLM 的創新發展。這可以創建更先進的模型,更好地應對軍事規劃人員面臨的獨特挑戰。
3、道德準則: 為在軍事規劃中使用 LLMs 制定道德準則,有助于消除人們對決策自動化程度提高的潛在后果的擔憂。軍事組織、人工智能研究人員和倫理學家之間的合作可以制定原則,在人工智能的益處與人的責任和義務之間取得平衡。
4、培訓與教育: 聯合培訓和教育計劃可以幫助軍事人員發展必要的技能,以便在規劃過程中有效實施 LLM。這可以包括有關 LLM 技術方面的培訓,以及有關人工智能在軍事行動中的道德和法律影響的教育。
5、互操作性: 開發可互操作的人工智能系統可促進軍事組織之間的無縫通信和信息共享,確保將 LLM 有效納入多國軍事規劃工作。
大型語言模型的強大功能為軍事規劃帶來了巨大的變革機遇。雖然在實施過程中會遇到一些挑戰和問題,但軍事組織、學術界和私營部門之間的合作有助于克服這些障礙,最大限度地發揮 LLM 在軍事行動中的潛力。通過利用人工智能的力量并保持技術創新與人類專業知識之間的平衡,軍事組織可以改進決策、加強溝通、優化資源分配,并更好地支持其人員的福祉。
作者:Chad Scott
原文來源:Crossroads of Power
隨著大數據、云計算、物聯網等一系列新興技術的大量涌現,人工智能技術不斷 取得突破性進展。深度強化學習技術作為人工智能的最新成果之一,正被逐漸引入軍事領域 中,促使軍事領域走向信息化和智能化。在未來戰爭作戰模式及軍隊發展建設中,網絡化、 信息化、智能化和無人化形成重要特征已經成為不可逆轉的趨勢。因此,本文在回顧了深度 強化學習基本原理和主要算法的基礎上,對當前深度強化學習在武器裝備、網絡安全、無人 機編隊、智能決策與博弈等方面的應用現狀進行了系統的梳理與總結。最后,針對實際推進 深度強化學習技術在軍事領域應用落地所面臨的一系列問題和挑戰,提供了未來進一步研究 的思路。
近年來,隨著大數據、云計算、物聯網等 一系列新興技術的大量涌現,人工智能技術不 斷取得突破性進展。作為 21 世紀的頂尖技術之 一,人工智能給各個領域的發展都帶來了前所 未有的機遇和挑戰,軍事領域也不例外。2016 年 6 月,由國防大學舉辦的“戰爭復雜性與信息化戰爭模擬”學術研討會,對大數據時代的軍事 信息體系與發展戰略進行了重點研究[1],軍事 智能化已不再是一個陌生的概念,正在全面影 響著軍隊建設和未來戰爭形態[2]。從應用角度 來看,軍事智能化主要體現在五個層次[3]:以 無人機、無人車等仿生智能為主的單裝智能;以人機融合、集群、協同等概念為核心的協同 智能;以智能感知、決策、打擊、防御等多要 素作戰力量綜合運用的體系智能;以通信、網 絡、電子、輿情等專業領域管控的專項智能;以作戰體系基于數據、模型、算法獲取涌現效 應為目標的進化智能。人工智能技術為這些應 用的落地提供了堅實的基礎。深度學習(deep learning,DL)和強化學 習(reinforcement learning,RL)作為實現人工 智能的先進技術,分別在信息感知和認知決策 領域有著出色的表現[4]-[5]。深度強化學習(Deep Reinforcement Learning,DRL)[6]則是近幾年 提出的新興概念,結合了 DL 與 RL 的優勢, 是人工智能的最新成果之一,在機器人控制、 計算機視覺、自然語言處理、博弈論等領域都 取得了重要研究成果。在軍事領域中,針對作 戰任務規劃、智能軍事決策與智能博弈對抗等 問題的解決,DRL 也有著巨大的應用潛力,引 起了研究人員的廣泛關注。
目前,關于 DRL 的研究已經取得了較大進 展,有一些關于 DRL 的綜述性文獻陸續發表 [6]-[7],但它們更加偏向于對 DRL 算法的總結。除此之外,也有一些關于 DRL 在領域應用中的 綜述,如無人機[8]、通信與網絡[9]、智能制造[10] 等領域,然而關于 DRL 在軍事領域中的應用, 并沒有專門的綜述性文獻對其進行深入梳理和 總結。基于此,本文首先回顧了 DRL 的理論發 展歷程;然后對 DRL 的基本算法及改進算法進 行了歸納總結;最后對前人研究中 DRL 在軍事 領域武器裝備、網絡安全、無人機編隊、智能 決策與博弈等問題的應用現狀進行了系統性的 總結,并展望了其發展方向和前景。
在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。
在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。
本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。
未來的系統開發包括指揮和控制(C2)技術,以支持空戰管理人員(ABM)和戰斗機飛行員,因為他們支持在一個更大的系統系統中使用自主無人機系統(UAS)的復雜任務。在復雜的、不斷發展的和動態的環境中,人類作戰員有效地觀察、定位、決定和行動的能力是必不可少的。然而,在ABM和飛行員之間的UAS監管變化過程中,作戰者的表現可能會下降,這大大增加了作戰者的認知工作量,超過了以往任務中通常看到的工作量。不幸的是,C2技術的發展往往把重點放在自動化和硬件上,使人類作戰員的參與度不足,不利于人與自動化的互動。目前,數字工程和基于模型的系統工程(MBSE)工具正在迅速被系統開發、整合和管理所采用,以支持整合這些系統所需的復雜開發工作。目前的研究在MBSE工具中整合了人的考慮,以分析開發過程中人與自動化的合作。該方法支持在建模的任務模擬中用一對專門的活動圖表示自動化輔助和人類作戰者,稱為任務行為者圖和OODA2活動圖,允許分析作戰過程中的錯誤和瓶頸。這種方法說明有可能減少作戰員的認知工作量,改善作戰員的決策,提高系統性能,同時減少系統重新設計的時間。
近年來,情報、監視和偵察(ISR)行動經歷了爆炸性的增長,導致收集的數據成倍增加。然而,盡管有如此豐富的ISR數據,個人、團隊和決策者往往無法開發出他們所需的個人和集體對作戰環境的態勢感知(SA)。增強現實(AR)技術為這種困境提供了一個潛在的解決方案。利用視覺、聽覺和觸覺的線索,AR技術有可能為合作和分析提供新的機會,這將提高個人和集體的安全意識。本文旨在為開發用于ISR行動中協作和分析的AR工具指明道路。它探討了AR技術的現狀,以澄清關鍵的定義、系統的分類和目前對有效使用的研究。它還研究了支撐情景意識的認知和學習理論,以了解AR在發展SA方面可以發揮什么作用(如果有的話)。這些理論被發現支持越來越多地使用AR技術來改善SA和協作,并確定了AR技術為促進SA必須解決的八個設計標準。如果這些設計標準得到尊重,可以預期AR技術會改善學習成績,提高用戶的積極性,并增強用戶的參與/互動和協作。此外,還可以預見在空間理解和長期記憶保持方面的收益。盡管有這樣的潛力,但在AR系統設計中必須適當地管理三個主要風險:引導注意力;系統管理中的分心;以及用戶定制。如果這些風險得到管理,設計標準得到尊重,那么用于ISR行動的協作和分析工具的開發者將能夠開啟AR所提供的光明前景。
軍隊正在研究改善其多域作戰(MDO)中的通信和敏捷性的方法。物聯網(IoT)的流行在公共和政府領域獲得了吸引力。它在MDO中的應用可能會徹底改變未來的戰局,并可能帶來戰略優勢。雖然這項技術給軍事能力帶來了好處,但它也帶來了挑戰,其中之一就是不確定性和相關風險。一個關鍵問題是如何解決這些不確定性。最近發表的研究成果提出了信息偽裝,將信息從一個數據域轉化為另一個數據域。由于這是一個相對較新的方法,我們研究了這種轉換的挑戰,以及如何檢測和解決這些相關的不確定性,特別是未知-未知因素,以改善決策。
現代世界受到了技術和全球連接的基礎設施動態的重大影響。隨著這種新環境的出現,許多領域的決策過程面臨更大的挑戰。領導者和決策者必須考慮各種因素的影響,包括那些屬于已知和未知的數據來源[9]。
雖然這不是一個新的概念,但在一些論文中已經提出了對已知和未知因素進行分類的定義。當條件是"已知-已知"(Known-Knowns):那么條件是有我們知道和理解的知識,已知-未知(known-Unknowns):條件是有我們不知道但不理解的知識,未知-已知(Unknown-knowns):條件是有我們理解但不知道的知識,以及"未知-未知"(Unknown-Unknowns):條件是有我們不理解也不知道的知識[6]。在圖1中,對知識的已知和未知分區的討論是圍繞一個問題展開的。圖中所選的是與對風險的認識和理解有關的。
在這四種情況中,"已知-已知"是最明顯的一種,人們可以對一個特定的問題有完整的了解,而 "未知-未知"則完全相反,也是最具挑戰性的一種。因此,重點應該是制定策略,以發現可能的未知數,從而將其轉換為已知數的數據。然而,在許多情況下,這可能不是小事,這可能需要應急計劃和適應性技能來應對不可預見的情況。
已知-未知的任務計劃需要被徹底觀察。然而,由于已知的部分,只要有足夠的時間和資源投入,就可以找到一個合理的方案。最后,為了處理未知數[11,22,23],人類是最著名的直覺模型,具有很強的預知能力[5]。因此,包括來自個人或團體的建議可以幫助對那些被遺漏的數據進行分類,從而被機器學習模型認為是未知的。
我們在圖2中提供了上述與我們的 "已知 "和 "未知"知識相關的不確定性區域的可視化表示。在這項研究中,我們將未知數視為圖像數據中未見或未檢測到的對象類別,通過應用第3.1節所述的圖像-音頻編碼方案,這些對象可以被發現或重新歸類為已知數。
圖2:我們提出的方法的可視化表示,說明了已知和未知對的前提。當我們離開綠色區域外的中心,踏入其他顏色的區域時,人類知識的邊界變得模糊和混亂。"?"代表需要探索的區域。紅色區域的點狀周長表示該區域的無界性,因為對該區域及其存在缺乏任何知識。向內的點狀箭頭表示目標應該是將這個紅色區域匯聚到任何可能的黃色、藍色或綠色區域。按照這個順序,理想情況下,每一個包絡區域都應該被收斂到它所包絡的區域。
任何決策都會受到風險存在的嚴重影響,任何能夠幫助識別和了解已知和未知的過程都是理想的。此外,對未知數據的識別和檢測可以使風險最小化。然而,面對先驗知識并不奢侈,只有少數數據樣本可供分析的情況很常見。軍事決策者,如指揮官,在做出關鍵決定時可能沒有什么選擇,最終可能完全依賴于他們的專業知識和新數據的輸入。他們可能會利用以前的經驗來分析傳來的信息,并捕捉可能的未知數據,以盡量減少風險。這種方法可能仍然不能涵蓋所有的未知因素。
本文工作的動機是決策中的主要挑戰,即我們完全依靠有意義的和足夠的數據來支持決策。另外,決策者必須對用于提供數據支持決策的技術的性能和結果有信心。因此,我們研究了當深度學習模型的性能由于缺乏豐富的數據樣本而受到限制時,如何提高決策過程中的信任水平。我們關注一個訓練有素的模型如何能夠高精度地檢測和識別未知(未檢測到的)物體;該模型區分新的觀察是屬于已知還是未知類別的能力。
這項工作背后的動力來自于美國陸軍的IoBT CRA項目中的一個問題,該項目將設備分為:紅色(敵人)、灰色(中立)、藍色(朋友)資產。類的屬性和行為是非常不確定的,與前面提到的第1.1節中的已知或未知的挑戰有關,因為要么來自友好來源的數據可能被破壞,要么敵人有可能被欺騙成友好數據來源[1,2,3,4]。因此,以較高的置信度對這些資產進行分類是一項具有挑戰性的任務。應對這一挑戰的最初步驟是,從這些設備中獲取數據,例如圖像、文本或音頻,并調查未知數據是否可以被分類為已知數據。
我們的方法包括選擇圖像數據和建立一個深度學習框架來解決分類的挑戰。圖像類被特別選擇來代表類似于軍事行動中常用的地形景觀。
因此,我們的框架由兩個獨立的部分組成;對從原始數據集獲得的圖像進行分類,以及對使用圖像-音頻編碼方案從圖像獲得的音頻信號進行分類(第3.1節)。
由于編碼將數據從一個數據域(圖像)轉換到另一個數據域(音頻),預計會有信息損失。為了解決上述轉換后的數據樣本的挑戰,我們提出了以下問題:當數據被編碼方案轉換后,我們能否提高模型的性能,從而將未知數轉換成已知數?我們怎樣才能彌補模型的低性能,從而使以前的未知數據能夠用于提高決策過程中的可信度?在模型的性能和正確分類數據以支持決策之間的權衡是什么?
機器學習的巨大成功導致了AI應用的新浪潮(例如,交通、安全、醫療、金融、國防),這些應用提供了巨大的好處,但無法向人類用戶解釋它們的決定和行動。DARPA的可解釋人工智能(XAI)項目致力于創建人工智能系統,其學習的模型和決策可以被最終用戶理解并適當信任。實現這一目標需要學習更多可解釋的模型、設計有效的解釋界面和理解有效解釋的心理要求的方法。XAI開發團隊正在通過創建ML技術和開發原理、策略和人機交互技術來解決前兩個挑戰,以生成有效的解釋。XAI的另一個團隊正在通過總結、擴展和應用心理解釋理論來解決第三個挑戰,以幫助XAI評估人員定義一個合適的評估框架,開發團隊將使用這個框架來測試他們的系統。XAI團隊于2018年5月完成了第一個為期4年的項目。在一系列正在進行的評估中,開發人員團隊正在評估他們的XAM系統的解釋在多大程度上改善了用戶理解、用戶信任和用戶任務性能。