亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。

人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。

陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。

負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。

伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。

他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。

伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。

陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。

巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。

她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。

伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。

陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。

根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。

"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。

融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。

麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。

除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。

戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。

他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"

他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。

McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。

不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。

他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"

巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"

伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。

他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?

他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。

伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。

參考來源:NDIA網站;作者:Josh Luckenbaugh

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

  • 決策科學家需要為海軍指揮官提供支持,使他們能夠綜合各種信息,做出最佳的戰術和作戰決策。大多數研究領域的重點是創造新知識,而決策科學的獨特之處在于根據現有信息做出最佳選擇。

在過去的五年中,美國將其戰略從中東轉移到了同級競爭對手上。軍隊也緊隨其后,正在進行現代化建設,以應對戰略競爭。美海軍計劃創新性地運用傳統能力,快速部署新興技術,并為多域作戰做準備。

這些工作需要一個具有復雜決策架構的目標定位系統,該架構應能整合戰爭的戰術、戰役和戰略層面,并能協調海軍有限平臺上的各種力量以產生效果。水手們需要為目標定位系統提供支持。然而,誰來對參與聯合作戰的海軍部隊的目標與效果進行實時配對?這就需要決策科學家。

雖然大多數研究領域都專注于創造新知識,但決策科學卻獨特地關注如何根據現有信息做出最佳選擇。決策科學探索人類如何在高壓力環境下做出決策,為決策過程提供結構,并改善結果--尤其是在只有困難選擇的情況下。

在海軍分布式海上作戰中,海上作戰中心(MOC)處于戰術作戰的最高作戰層次。聯合部隊海上分隊指揮官利用海上作戰中心發布任務式命令,實現任務式指揮,并指揮部隊為目標戰略服務。《海軍戰術、技術和程序--海上作戰中心》(NTTP 3-32.1)所述,海軍授權海上作戰中心管理戰區所有類型戰爭的海上目標戰略。

戰略競爭將擴大情報與作戰之間的互動。海軍識別、優先排序和目標定位效果的過程將面臨決策時間縮短的問題。艦隊將從戰術、技術和程序以及標準操作程序中獲益,以縮小差距并加快分散部隊的決策過程。

決策科學參謀主任

與情報參謀長(N2)和作戰參謀長(N3)一樣,決策參謀科學家將獨立獲取有關作戰空間的信息,并確定參謀人員獲取信息和采取行動的方式。信息的爆炸性增長對情報和作戰人員提出了更高的要求,要求他們確定收集信息的優先次序、解析信息流、管理信息過載、進行評估并為指揮官制定最佳行動方案。這一過程包括各級決策,這些決策會產生二階和三階效應,或提高或降低決策速度,最終對指揮官產生影響或制約。決策科學家是決策的質量控制機制,尤其是在時間緊迫的情況下的目標選擇過程中,艦隊必須與攻擊平臺和能力多于艦隊彈藥的對手交戰。

對決策科學家的培訓可以參照學生在弗吉尼亞州諾福克美國聯合參謀學院為期一年的聯合高級作戰學校(JAWS)接受的培訓。該課程教授個人如何從作戰到戰略層面進行規劃,并授予聯合作戰規劃和戰略碩士學位。聯合參謀學院采用課堂教學、書面論文、實際演練和論文相結合的方式進行教學。軍方通常會預先確定學生在 JAWS 結束后的去向,通常是作戰司令部的規劃崗位。

海軍將效仿 JAWS 的做法,開設類似課程,培養決策科學家骨干。海軍可以對這些軍官進行教育,然后將他們分配到軍事行動中心,協助軍事行動中心主任和艦隊司令做出各種決策。海軍擬通過位于羅德島紐波特的海軍戰爭學院或位于加利福尼亞蒙特雷的海軍研究生院開設這一課程。

軍事戰略家對人工智能、量子計算、高超音速和定向能武器系統以及更小但能力更強的衛星系統的前景充滿信心。這些進步將擴大軍方從更遠距離瞄準對手的能力,提高信息獲取和綜合能力,并使某些作戰決策自動化。海軍需要決策科學家來確保個人或小團體能在正確的層次上以正確的方式做出日益復雜的決策,以實現作戰目標。決策科學家將在海上軍事行動中心發揮關鍵作用,最大限度地發揮這些能力,同時確保艦隊的決策能夠為和平或戰爭期間的行動提供適當的支持。

當前的海上行動需要決策科學家確保在各級戰爭中做出有效、及時的決策。然而,當海軍采用復雜的人工智能和機器學習技術時,決策科學將變得更加重要。未來的軍事行動將受益于決策科學家,以確保人類而非機器在決策中的主導地位。海軍應抓緊時間培訓決策科學家,并將他們安排到軍事行動指揮中心和其他重要的決策參謀部和指揮部。

參考來源:U.S. Naval Institute

付費5元查看完整內容

在未來戰場上,人工合成的決策將出現在人類決策的內部和周圍。事實上,人工智能(AI)將改變人類生活的方方面面。戰爭以及人們對戰爭的看法也不例外。特別是,美國陸軍構想戰爭方式的框架和方法必須進行調整,以便將非情感智力的優勢與人類情感思維的洞察力結合起來。人工智能與人類行動者的組合有可能為軍事決策提供決定性的優勢,并代表了成功軍事行動的新型認知框架和方法。人工智能在軍事領域的應用已經開始擴散,隨之而來的作戰環境復雜性的增加已不可避免。

正如核武器結束了第二次世界大戰,并在二十世紀阻止了大國沖突的再次發生一樣,競爭者預計人工智能將在二十一世紀成為國家力量最重要的方面。這項工作的重點是美國陸軍的文化,但當然也適用于其他企業文化。如果要在未來有效地利用人工智能,而且必須這樣做才能應對競爭對手使用人工智能所帶來的幾乎必然的挑戰,那么成功地融入人工智能工具就需要對現有文化進行分析,并對未來的文化和技術發展進行可視化。美國將致力于在人工智能的軍事應用方面取得并保持主導地位。否則將承擔巨大風險,并將主動權拱手讓給積極尋求相對優勢地位的敵人。

結論

合成有機團隊認知的兩大障礙是美陸軍領導的文化阻力和軍事決策的結構框架。首先,也是最重要的一點是,領導者必須持續觀察人工智能工具并與之互動,建立信心并接受其提高認知能力和改善決策的能力。在引入人工智能工具的同時,幾乎肯定會出現關于機器易犯錯誤或充滿敵意的說法,但必須通過展示人工智能的能力以及與人類團隊的比較,來消除和緩和對其潛在效力的懷疑。將人工智能工具視為靈丹妙藥的健康而合理的懷疑態度有可能會無益地壓倒創新和有效利用這些工具的意愿。克服這一問題需要高層領導的高度重視和下屬的最終認可。其次,這些工具的結構布局很可能會對它們如何快速體現自身價值產生重大影響。開始整合人工智能工具的一個看似自然的場所是在 CTC 環境中,以及在大型總部作戰演習的大型模擬中。最初的工具在營級以下可能用處不大,但如果納入迭代設計、軍事決策過程或聯合規劃過程,則幾乎肯定會增強營級及以上的軍事規劃。雖然在本作品中,對工具的描述主要集中在與指揮官的直接關系上,但在最初的介紹中,與參謀部的某些成員(包括執行軍官或參謀長、作戰軍官和情報軍官)建立直接關系可能會更有用。與所有軍事組織一樣,組織內個人的個性和能力必須推動系統和工具的調整,使其與需求保持平衡。

幾乎可以肯定的是,在將人工智能工具融入軍事組織的初期,一定會出現摩擦、不完善和懷疑。承認這種可能性和任務的挑戰性并不意味著沒有必要這樣做。人類歷史上幾乎所有的創新都面臨著同樣的障礙,尤其是在文化保守的大型官僚機構中進行創新時。面對國際敵對競爭對手的挑戰,美國陸軍目前正在文化和組織變革的許多戰線上奮力前行,在整合人工智能工具的斗爭中放棄陣地無異于在機械化戰爭之初加倍使用馬騎兵。在戰爭中,第二名沒有可取的獎賞,而人工智能在決策方面的潛在優勢,對那些沒有利用這一優勢的行為體來說,是一個重大優勢。現在是通過擁抱人工智能工具和改變戰爭節奏來更好地合作的時候了。

付費5元查看完整內容

人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。

人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。

電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。

將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。

在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。

此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。

人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。

不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。

最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。

最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。

付費5元查看完整內容

從規劃到執行,人工智能(AI)在軍事行動中發揮著越來越重要的作用。隨著技術的進步,將人工智能融入國防戰略已成為各國保持競爭優勢、確保國民安全和安保的關鍵所在。人工智能在軍事行動中的潛在應用非常廣泛,從加強決策過程到提高軍事系統的效率和效力,不一而足。

人工智能在軍事行動中的主要應用方式之一是分析大量數據。在當今的信息時代,兵力從衛星圖像、信號情報和社交媒體等各種來源生成和收集海量數據。人工分析這些數據是一個耗時耗力的過程,可能會延誤關鍵決策。而人工智能算法則能以更快的速度處理和分析這些數據,使軍事指揮官能夠根據實時信息做出更明智的決策。

除數據分析外,人工智能還被用于加強軍事行動的規劃和執行。例如,人工智能驅動的系統可以通過模擬各種場景和預測不同戰略的結果,幫助軍事戰略家制定更有效、更高效的作戰計劃。這樣,指揮官就能根據最準確的最新信息選擇最佳行動方案。此外,人工智能還可用于優化人員和裝備等資源的分配,確保以最有效的方式部署兵力。

人工智能在軍事行動中的另一個重要應用是開發自主系統。無人駕駛飛行器(UAVs)又稱無人機,由于能夠在不危及人類生命的情況下執行監視和偵察任務,已成為現代戰爭的主要裝備。人工智能技術有可能進一步提升這些能力,使無人機能夠自主運行,根據周圍環境和任務目標做出決策,而無需人工干預。這不僅能降低人類操作員的風險,還能更高效、更有效地利用這些資產。

此外,人工智能正被集成到各種軍事系統中,以提高其性能和能力。例如,人工智能驅動的算法可用于提高導彈防御系統的精確度和瞄準能力,增強其攔截和消除來襲威脅的效力。同樣,人工智能也可用于提高軍事通信系統的性能,確保信息在不同單位和指揮中心之間快速、安全地傳輸。

盡管人工智能為軍事行動帶來了諸多好處,但也存在一些需要解決的問題和挑戰。其中一個主要問題是在戰爭中使用人工智能所涉及的倫理問題,特別是當涉及到可以在沒有人類干預的情況下做出生死攸關決定的自主系統時。確保這些系統遵守國際法和道德標準對于防止潛在的濫用和意外后果至關重要。

另一個挑戰是對手惡意利用人工智能技術的風險。隨著人工智能變得越來越先進,越來越容易獲取,人們越來越擔心敵對行為體可能會利用人工智能開發出新的、更復雜的網絡戰形式,甚至制造出難以防御的人工智能武器。

總之,將人工智能融入軍事行動有可能徹底改變戰爭的打法和勝負。從加強決策過程到提高軍事系統的效率和效力,人工智能提供了眾多好處,可以幫助各國在日益復雜和不可預測的全球安全環境中保持競爭優勢。然而,必須解決與戰爭中的人工智能相關的倫理問題和潛在風險,以確保負責任地使用這項技術,并為更大的利益服務。

參考來源:TS2 space,作者:Marcin Fr?ckiewicz

付費5元查看完整內容

雷達和電子戰(EW)等軍事應用測試和測量系統的設計人員正在加緊使用人工智能(AI)解決方案,以便更好地測試認知功能。同時,現代數字架構的采用也推動了軍事測試需求的增長。

人工智能(AI)和機器學習(ML)工具正在進入國防系統的幾乎每一個領域,從制造、雷達系統開發、航空電子設備到軟件開發和測試測量系統。

NI 公司(德克薩斯州奧斯汀)航空航天、國防與政府研究與原型開發解決方案營銷經理 Jeremy Twaits 說:"人工智能不僅影響測試系統本身的能力,還影響我們的測試方式。"人工智能使系統更具適應性,其行為會根據訓練數據集發生變化。有了人工智能,工程師必須了解系統性能的界限,并使用測試方法來滿足系統部署時可能遇到的最關鍵和最可能的情況。

人工智能工具還能在電子戰系統中實現認知功能。羅德與施瓦茨公司(Rohde & Schwarz,馬里蘭州哥倫比亞市)航空航天與國防市場部雷達與 EW(電子戰)全球市場部門經理 Tim Fountain 說:"通過為客戶配備工具,提供高帶寬、長時間射頻記錄和回放系統,用于在操作相關的射頻環境中訓練認知系統,從而幫助客戶交付支持 AI/ML 的系統"。

他繼續說:"此外,認知系統還可用于提取和分類 ELINT(電子情報)接收器捕獲的寬帶數據中的新型發射器。我們的客戶一再告訴我們,他們面臨的一個挑戰是,他們并不缺少來自采集活動的數據,但對這些信號進行標記、分類、排序和地理定位仍然是一項人工任務,由于時間和預算壓力,分析人員往往會忽略這項任務"。

軍事用戶對數據量的要求只增不減,這給系統設計人員和系統測試人員帶來了更大的壓力。

Keysight 航空航天/國防和政府解決方案集團(加利福尼亞州圣克拉拉市)總經理 Greg Patschke 說:"隨著高速捕獲技術的發展,我們能夠收集的數據量正以指數級速度增長。這些大型數據集帶來了分析信息和得出結果的挑戰。目前,我們正在使用無監督機器學習工具來加快洞察之路。我們可以使用智能算法來識別感興趣的信號,對信息進行分類,并識別數據中的模式和異常。利用這項技術為我們打開了一扇通往全新數據分析世界的大門,而這在以前是不可行的"。

由于系統的復雜性,在定義測試場景的同時,通過人工智能系統實現適應性將至關重要。

Twaits指出:"幾乎不可能在每一種可能的情況下進行測試,但業界必須定義關鍵的測試場景和模型。"由于真正測試和信任人工智能系統的動態性和挑戰性,測試平臺必須具備適應性,以應對未來的測試場景和要求。例如,NI 的 COTS(現成商用)硬件可以與 MathWorks 的軟件工具(如深度學習工具箱)相連接。NI 和 MathWorks 合作展示了如何利用軟件定義無線電 (SDR) 對訓練有素的神經網絡進行空中測試和評估,以對雷達和 5G 新無線電信號進行分類。

在軟件中定義測試功能

人工智能在測試解決方案中的應用得益于在軟件中植入測試和測量系統功能的能力。

Patschke 說:"在測試和測量行業,不斷需要改進測量軟件的功能。EW 測試的專業性往往要求軟件具有一定程度的創新性和靈活性,而這在其他行業通常是看不到的。例如,與雷達/預警機有關的到達角(AOA)測試需要軟件和硬件的無縫配對,以適當應用實時運動學并準確計算 AOA 結果"。

他繼續說:"幾年前,[測試]軟件還不具備這種功能,但隨著客戶要求和需求的變化,像 Keysight 這樣的公司已經進行了調整,以滿足這些需求。客戶要求系統具有靈活性,以便在新的挑戰出現時滿足他們的需求。滿足這些需求的唯一方法就是不斷升級我們的軟件,盡可能增加新的功能,這樣就可以不斷地將硬件重新用于多種用途"。

對標準化和快速周轉的需求也需要更多的軟件功能。

Fountain 說:"客戶告訴 R&S 最緊迫的問題是,他們需要快速、可驗證和可重復的測量,而且通常是基于標準的測量。"客戶通常沒有時間或內部專業知識來開發特定的測量功能,因此可能會依賴供應商將該測量功能作為附加功能提供,或者在某些情況下使用事實上的行業工具集(如 Matlab 和/或 Simlink)來支持快速軟件/硬件功能,特別是隨著 FPGA(現場可編程門陣列)和 GPU(圖形處理器)在測量數據流中變得越來越普遍。(圖 1)。

[圖1 ? 羅德與施瓦茨公司提供集成記錄、分析和回放系統(IRAPS)。IRAPS可用于需要寬帶寬、長時間射頻記錄和回放的實驗室和靶場射頻記錄和回放應用,如雷達測試和靶場電子戰(EW)效果評估。]

NI 雷達/EW 業務開發經理 Haydn Nelson 說:"在軟件中定義測試系統是整個航空航天工業趨勢的體現,通常被稱為基于模型的系統工程。"推動系統級模型和要求的標準化使軟件成為定義自動測試系統不可或缺的一部分。

Nelson 繼續說:"對于雷達和電子戰來說,由于雷達的多任務性質和電子戰的保密性質,這具有挑戰性。定義、開發、評估和部署新方法和技術是一個復雜的過程。隨著威脅的不斷發展,用戶需要更快地獲得新系統,而測試和評估流程不能阻礙這一進程。軟件定義的測試系統對于在保持系統能力和性能敏感性的同時滿足速度要求至關重要。

對更多實驗室測試的需求也在推動軟件定義測試系統的發展。Nelson 說:"我們看到的一個具體要求是,能夠在實驗室中以現實的方式進行更多測試,而無需面對固定和鎖定測試系統的挑戰。在公開范圍測試之前,測試的次數越多,新方法或新技術獲得最終用戶信任的信心就越大。共享數據和證明能力與開發能力本身同樣重要。"

雷達/預警要求

跨越多個領域的復雜對抗性威脅對雷達和預警系統的性能提出了更高的要求,從而給測試系統設計人員帶來了更大的壓力,要求他們提供準確、高效的解決方案。

"總體而言,趨勢是不斷提高測量精度和降低相位噪聲,"Fountain 說。"精度和相位噪聲直接關系到描述雷達性能的能力。在電子戰方面,我們看到,在擁擠和有爭議的作戰環境的推動下,高度復雜的電磁場景正朝著更高保真模擬的方向發展。"

雷達和預警系統的數字架構要求和現代化努力也要求測試系統具有多功能性。

NI 的 Twaits 說:"從高層次上講,測試和評估的要求是由采用現代數字架構驅動的,這些架構要求在單個系統中進行功能、參數和系統級測試,以及分割數字和射頻系統以進行獨立測試的方法。"此外,許多傳統雷達和預警系統正在進行現代化改造,而傳統的測試平臺靈活性太差,無法滿足新系統功能的測試要求。現代化不會帶來無限的測試預算。新系統和升級要不斷平衡預算和時間交付壓力所帶來的限制,而適應不斷變化的要求本身就是一種要求"。

帶寬需求也對測試系統提出了更高的要求。"從技術上講,在電磁頻譜戰(EMSO)領域,實戰系統正朝著更寬的帶寬、更高的頻率、更大的頻率靈活性和更強的抗威脅能力方向發展。因此,[測試和測量]設備必須能夠生成和分析具有適當規格的波形,快速調整,并創建逼真的場景,在接近真實的運行條件下對被測設備施加壓力。"

測試系統還能在系統部署前的設計過程中盡早發現缺陷,從而降低長期生命周期成本。

Twaits說:"按時、按預算交付的一個關鍵方面是制定測試策略,以便在設計過程中及早發現缺陷。露天靶場測試成本高昂,對于測試早期設計既不可行也不實際。例如,在雷達測試中,客戶正在尋找硬件在環系統,該系統可將真實目標注入到正在測試的雷達系統中。這使他們能夠盡早、頻繁地測試系統,盡早消除問題,并針對各種情況對雷達進行評估"。

NI 提供的雷達目標生成 (RTG) 軟件使客戶能夠將 PXI 射頻矢量信號收發器 (VST) 作為閉環實時雷達目標生成器來操作。它為工程師提供了一個單一模塊,既可作為標準雷達參數測量設備,也可作為 RTG,具有很強的能力和靈活性,適合最終用戶的調整。通過完全開放的列表模式,用戶可以定義多達 1000 萬個測試目標,以硬件速度進行排序,從而以在露天靶場上無法實現的方式刺激雷達。

電子戰系統的作用是對抗和探測復雜的敵對威脅,而測試系統的作用則是使作戰人員不僅能高效而且能安全地利用這些系統。

Patschke 指出:"EW 測試的核心是確保人員和設備都做好應對各種電磁威脅的準備,從而保證部隊的安全。隨著 EW 測試環境越來越先進,客戶需要生成盡可能逼真的模擬。要做到這一點,就必須生成能模擬現實條件的高保真動態場景。過去,這需要大量的設備,而這些設備在使用中往往缺乏通用性。現在,客戶不僅希望他們的設備具有更高水平的能力,如更寬的帶寬和更多的輸出端口,而且還希望它能以更緊湊的尺寸提供更大的靈活性。Keysight 推出了包括最新 M9484C 矢量信號發生器在內的可擴展、開放式架構 EW 測試和評估產品組合,滿足了客戶的這些期望。"(圖 2)

[圖2 ? Keysight 的 M9484C 矢量信號發生器是一個四端口信號源,還能產生脈沖對脈沖輸出。這種單一信號發生器能夠取代四個老式信號源]。

Fountain 對發展趨勢的最后評論是:"人們希望從露天靶場測試轉向封閉實驗室,這主要是由于露天測試的復雜性、成本以及測試產生的射頻輻射可能被不受歡迎的聽眾截獲"。

開放架構/MOSA 計劃

Fountain 說,在測試和測量層面,他并沒有看到這些計劃有多少活動。"測量系統在操作層面有一些利基應用,模塊化架構(如 MOSA[模塊化開放系統方法]和 SOSA[傳感器開放系統架構])的優勢和附加成本將適用于這些應用,但在大多數情況下,測試和測量設備是在實驗室中,需要一個可控的環境來提供高度的測量精度。"

Nelson說:"從許多方面來看,SOSA等標準架構在嵌入式設計中采用的理念與NI在模塊化PXI平臺測試和測量設計中采用的理念非常相似:制造模塊化、靈活和可互操作的系統。模塊化開放式架構的這三個目標是未來軍用嵌入式系統取得成功的關鍵,使系統能夠在今天設計,并在明天進行低成本升級。NI 的測試和測量方法與這一目標不謀而合。擁有模塊化、可擴展、靈活和可升級的嵌入式系統意味著測試系統也必須是模塊化、可擴展、靈活和可升級的,以適應不斷變化的要求、能力和接口。我們相信,與開放式架構計劃的模塊化方向一致的模塊化測試系統將有助于實現這一新嵌入式系統理念的承諾。"

Keysight 的 Patschke 說:"投資新產品的客戶希望確保其傳統設備和系統能夠與升級后的平臺協同運行。"這不僅是一項節約成本的措施,而且還能通過延長舊產品的使用壽命來減少浪費,同時使整個系統保持最新狀態。開放式架構平臺將可持續發展作為優先事項,同時又不犧牲升級能力。Keysight 在設計下一代系統時非常重視開放式架構的實施。"

展望未來

人工智能和軟件定義的測試系統正在為現在以及未來的雷達和 EW 測試系統的更多能力鋪平道路,例如軟件定義雷達、頻譜共享、數字孿生等領域。

Patschke說:"未來美國國防部(DoD)客戶的系統測試可能發展的一個途徑就是數字孿生技術的進步。"這些系統利用基于模型的系統工程(MBSE)方法生成數字化的真實測試場景,這些場景通常會考慮到外部變量,而以前的虛擬測試方法無法做到這一點。理論上,'數字孿生'概念可以將大多數(如果不是全部)物理系統工程活動轉換為虛擬活動。在進行物理測試不切實際、真實世界的效果難以再現的情況下,"數字孿生 "有可能增加廣泛的價值。隨著客戶尋求更可靠、更具成本效益的測試手段,數字孿生選擇可能會變得更具吸引力。

Fountain 說,未來幾年有四個關鍵領域將推動測試和測量技術的發展:

  • 頻譜共享: 頻譜帶正被重新部署到 CBRS(無線網絡)等商業應用中,這就要求進行更全面、更精確的共存測試。
  • 軟件定義雷達: 從模擬脈沖雷達到全數字調制雷達(每個脈沖都可以調制)的轉變已經實現了雷達與合作資產之間的通信。但這不僅僅是雷達和通信,還包括 EW,包括 EP 和 EA,以及集成到單一平臺的[軍事通信]。
  • 量子傳感和量子雷達仍處于早期階段,但如果這些技術能在 "實戰 "中發揮作用,它們將改變沖突的根本結構。
  • 從傳統的基于脈沖描述符字(PDW)的環境生成轉向基于高保真同相(IQ)的系統,這推動了對更高帶寬射頻生成能力的需求。

雷達和預警系統對靈活性和多功能性的需求也成為測試和測量需求的一個特點。

"納爾遜說:"我們已經看到許多要求測試系統像瑞士軍刀一樣的需求:客戶希望測試設備能在單一系統中完成所有功能。

"我們經常收到這樣的請求:要求配置的系統在進行雷達目標生成等系統級測試的同時,還能進行參數測試,并能進行射頻記錄和回放。這些要求結合在一起,就很難在保持可接受的尺寸、重量和功率的同時,以具有成本效益的方式完成測試。只有采用模塊化系統,在封閉的特定功能與使用開放軟件擴展功能之間取得平衡,才能做到這一點。我們看到的趨勢是,現代測試系統必須像它們所測試的系統一樣具有多功能。

付費5元查看完整內容

隨著大數據、云計算、物聯網等一系列新興技術的大量涌現,人工智能技術不斷 取得突破性進展。深度強化學習技術作為人工智能的最新成果之一,正被逐漸引入軍事領域 中,促使軍事領域走向信息化和智能化。在未來戰爭作戰模式及軍隊發展建設中,網絡化、 信息化、智能化和無人化形成重要特征已經成為不可逆轉的趨勢。因此,本文在回顧了深度 強化學習基本原理和主要算法的基礎上,對當前深度強化學習在武器裝備、網絡安全、無人 機編隊、智能決策與博弈等方面的應用現狀進行了系統的梳理與總結。最后,針對實際推進 深度強化學習技術在軍事領域應用落地所面臨的一系列問題和挑戰,提供了未來進一步研究 的思路。

近年來,隨著大數據、云計算、物聯網等 一系列新興技術的大量涌現,人工智能技術不 斷取得突破性進展。作為 21 世紀的頂尖技術之 一,人工智能給各個領域的發展都帶來了前所 未有的機遇和挑戰,軍事領域也不例外。2016 年 6 月,由國防大學舉辦的“戰爭復雜性與信息化戰爭模擬”學術研討會,對大數據時代的軍事 信息體系與發展戰略進行了重點研究[1],軍事 智能化已不再是一個陌生的概念,正在全面影 響著軍隊建設和未來戰爭形態[2]。從應用角度 來看,軍事智能化主要體現在五個層次[3]:以 無人機、無人車等仿生智能為主的單裝智能;以人機融合、集群、協同等概念為核心的協同 智能;以智能感知、決策、打擊、防御等多要 素作戰力量綜合運用的體系智能;以通信、網 絡、電子、輿情等專業領域管控的專項智能;以作戰體系基于數據、模型、算法獲取涌現效 應為目標的進化智能。人工智能技術為這些應 用的落地提供了堅實的基礎。深度學習(deep learning,DL)和強化學 習(reinforcement learning,RL)作為實現人工 智能的先進技術,分別在信息感知和認知決策 領域有著出色的表現[4]-[5]。深度強化學習(Deep Reinforcement Learning,DRL)[6]則是近幾年 提出的新興概念,結合了 DL 與 RL 的優勢, 是人工智能的最新成果之一,在機器人控制、 計算機視覺、自然語言處理、博弈論等領域都 取得了重要研究成果。在軍事領域中,針對作 戰任務規劃、智能軍事決策與智能博弈對抗等 問題的解決,DRL 也有著巨大的應用潛力,引 起了研究人員的廣泛關注。

目前,關于 DRL 的研究已經取得了較大進 展,有一些關于 DRL 的綜述性文獻陸續發表 [6]-[7],但它們更加偏向于對 DRL 算法的總結。除此之外,也有一些關于 DRL 在領域應用中的 綜述,如無人機[8]、通信與網絡[9]、智能制造[10] 等領域,然而關于 DRL 在軍事領域中的應用, 并沒有專門的綜述性文獻對其進行深入梳理和 總結。基于此,本文首先回顧了 DRL 的理論發 展歷程;然后對 DRL 的基本算法及改進算法進 行了歸納總結;最后對前人研究中 DRL 在軍事 領域武器裝備、網絡安全、無人機編隊、智能 決策與博弈等問題的應用現狀進行了系統性的 總結,并展望了其發展方向和前景。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容

美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。

因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。

美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。

因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。

去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。

付費5元查看完整內容

人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。

引言

人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。

作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。

人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。

在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。

如何在海戰領域整合人工智能?

目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。

鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。

如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。

如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。

人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。

C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。

圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。

圖1. 海上人工智能系統的擬議架構

建議

首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。

第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。

第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。

付費5元查看完整內容

人工智能(AI)的最新進展為許多經典的AI應用帶來了突破,例如計算機視覺、自然語言處理、機器人和數據挖掘。因此,有很多人努力將這些進展應用于軍事領域,如監視、偵察、威脅評估、水雷戰、網絡安全、情報分析、指揮和控制以及教育和培訓。然而,盡管人工智能在軍事應用上有很多可能性,但也有很多挑戰需要考慮。例如,1)高風險意味著軍事人工智能系統需要透明,以獲得決策者的信任并能進行風險分析;這是一個挑戰,因為許多人工智能技術具有黑盒性質,缺乏足夠的透明度;2)軍用 AI 系統需要穩健可靠;這是一個挑戰,因為已經表明即使對所使用的 AI 技術沒有任何了解,AI 技術也容易受到輸入數據微小變動的影響,并且 3) 許多 AI 技術基于需要大量數據的機器學習訓練;這是一個挑戰,因為在軍事應用中經常缺乏足夠的數據。本文介紹了正在進行的項目成果,以說明軍事應用中人工智能的可能性,以及如何應對這些挑戰。

1 介紹

人工智能(AI),特別是機器學習(ML)和深度學習(DL),在十年內已經從研究機構和大學的原型設計轉向工業和現實世界應用。使用DL技術的現代人工智能已經徹底改變了傳統人工智能應用的性能,如機器翻譯、問答系統和語音識別。這一領域的許多進展也將其優秀的想法變成了卓越的人工智能應用,能夠進行圖像說明、唇語閱讀、語音模仿、視頻合成、連續控制等。這些成果表明,一個能夠自我編程的機器有潛力:1)提高軟件和硬件開發的效率,2)以超越人類的水平完成特定的任務,3)為人類以前沒有考慮過的問題提供創造性的解決方案,4)在人類已知的主觀、偏見、不公平、腐敗等方面提供客觀和公平的決定。

在軍事背景下,人工智能的潛力存在于所有維度的軍事空間中(即陸地、海洋、空中、空間和信息)和所有級別的戰爭內(即政治、戰略、作戰和戰術)。例如,在政治和戰略層面,人工智能可以通過制作和發布大量的虛假信息來破壞對手的穩定狀態。在這種情況下,人工智能很可能也是抵御這種攻擊的最佳人選。在戰術層面,人工智能可以改善無人系統的部分自主控制,以便人類操作員可以更有效地操作無人系統,最終擴大戰場影響力,增強戰場實力。

然而,正如我們將在這項工作中指出的那樣,有幾個關鍵挑戰可能會減緩或限制現代人工智能在軍事應用中的使用:

  • ML模型的透明度和可解釋性不足。舉一個例子,使用DL對使用深度神經網絡(DNN)的自動駕駛汽車進行控制建模需要幾十萬個參數。顯然,這樣一個復雜的程序不容易被解釋。即使是使用替代的ML算法生成的模型,其中模型可以被圖形化,如解析樹或決策樹,即使在應用于玩具模型問題時,也很難甚至不可能解釋。一個更重要的挑戰是人工智能系統向決策者或人類操作者解釋其推理的能力,或者在這種情況下是無能為力的。
  • 眾所周知,使用ML開發的模型很容易受到對抗性攻擊。例如,基于DL的模型可以很容易地通過操縱輸入信號而被欺騙,即使該模型對攻擊者來說是未知的。舉一個例子,使用最先進的目標檢測的無人駕駛飛行器(UAV)也有可能被地面上精心設計的偽裝圖案所欺騙。
  • 任何 ML 應用的原料是機器可以從中學習并最終深入理解的數據。軍事組織通常擅長收集數據用于匯報或重建目的。然而,不能保證同樣的數據可以成功用于ML。因此,軍事組織可能必須調整其數據收集過程,以充分利用現代人工智能技術,如DL。

本文的目的是強調人工智能在軍事應用中的可能性和主要挑戰。第2節簡要介紹了DL,它是本文關注的主要人工智能技術。第3節提供了幾個人工智能在軍事領域中應用的例子。第4節描述了與軍事領域中人工智能的關鍵挑戰,以及部分可用于解決這些挑戰的技術。第5節提出了結論。

2 深度學習

我們所說的DL是指由多個非線性處理單元層組成的機器學習模型。通常情況下,這些模型由人工神經網絡表示。在這種情況下,神經元指的是一個單一的計算單元,其輸出是通過一個(非線性)激活函數的輸入的加權和(例如,一個只有在信號為正時才通過的函數)。DNN指的是具有大量串連神經元層(神經元層由神經元并聯組成)的系統。與DNN相對的是淺層神經網絡,它只有一層平行連接的神經元。

直到大約十年前,DNN的訓練幾乎是不可能的。第一個成功的深度網絡的訓練策略是基于一次訓練一個層。逐層訓練的深度網絡的參數最終使用隨機梯度方法進行微調(同時),以最大限度地提高分類精度。此后,許多研究進展使得直接訓練DNN成為可能,而無需逐層訓練。例如,人們發現,網絡權重的初始化策略與激活函數的選擇相結合是解決問題的關鍵。甚至一些技術,如在訓練階段隨機停用神經元,以及在信號到達激活函數之前對其進行歸一化處理,也已證明對于使用 DNN 獲得良好結果非常重要。

表示學習是DNN高性能的主要原因之一。使用DL和DNN,不再需要手動制作學習特定任務所需的特征。相反,辨別特征是在 DNN 的訓練過程中自動學習的。

支持 DL 應用的技術和工具如今比以往任何時候都更加好用。通過廉價的計算資源、免費的 ML 框架、預訓練模型、開源數據和代碼,僅使用有限的編程/腳本技能即可成功應用和定制高級 DL。

3 軍事人工智能應用

本節介紹了幾個可以應用人工智能來提高軍事能力的例子。

3.1 監視

海上監視是利用固定雷達站、巡邏飛機、船舶,以及近年來使用自動識別系統(AIS)對海上船只進行的電子跟蹤。這些信息源提供了大量的關于船只運動的信息,這些信息可能會揭示船舶非法的、不安全的、有威脅的和異常的行為。然而,大量的船舶運動信息使得手動檢測此類行為變得困難。因此ML-方法被用來從船舶運動數據中生成常態模型。任何偏離常態模型的船舶運動都被認為是異常的,并提交給操作員進行人工檢查。

一種早期的海事異常檢測方法使用模糊 ARTMAP 神經網絡架構根據港口位置對正常船舶速度進行建模。另一種方法是利用運動模式的關聯學習來預測基于其當前位置和行駛方向的船舶運動。其他方法則使用基于高斯混合模型(GMM)和內核密度估計(KDE)的無監督聚類。這些模型能夠檢測出改變方向、穿越海路、向相反方向移動或高速行駛的船只。最近的方法是使用貝葉斯網絡來檢測錯誤的船舶類型,以及不連續的、不可能的和徘徊的船舶運動。海事異常檢測的未來發展還應該考慮周圍的船只和多艘船只之間的互動。

3.2 水下水雷戰

水雷對海上船只構成重大威脅,被用來限制船只行動或阻止船只通過受限水域。因此,反水雷措施(MCM)試圖定位和消除水雷,以實現行動自由。越來越多地使用配備合成孔徑聲納 (SAS) 的自主水下航行器 (AUV) 進行水雷搜索,該水下航行器能提供厘米分辨率的海底聲學圖像。由于AUV收集了大量的SAS圖像,自動目標分類對于區分潛在的水雷與其他物體是很有用的。雖然對水雷的自動目標分類已經研究了很長時間,但DNN在圖像分類方面的高性能表現使人們對如何將這種辦法用于自動地雷探測產生了興趣。

一些研究顯示了DNN在水雷探測方面的潛力。例如,這些研究描述了如何將假水雷的形狀、類似水雷的目標、人造物體和巖石放置在海底的各種地理圖形位置上。然后用AUV和SAS對海底進行測量。結果顯示,與傳統的目標分類器相比,DNN的性能明顯提高,對水雷形狀的檢測概率更高,誤報率更低。同樣,這些研究也描述了如何生成圓柱形物體和各種海底景觀的協同SAS圖像,并這些圖像用來訓練DNN。進一步的研究可能會探究如何從所有類型的雜波物體中分辨出水雷,結合檢測和分類,以及對噪聲、模糊和遮擋的魯棒性等

3.3 網絡安全

入侵檢測是網絡安全的重要組成部分,可在惡意網絡活動危及信息可用性、完整性或機密性之前對其進行檢測。入侵檢測是使用入侵檢測系統(IDS)進行的,該系統將網絡流量分類為正常或入侵。然而,由于正常的網絡流量往往具有與實際攻擊相似的特征,網絡安全分析師對所有入侵警報的情況進行分析,以確定是否存在實際的攻擊。雖然基于簽名的IDS通常擅長檢測已知的攻擊模式,但它們不能檢測以前未見過的攻擊。此外,基于簽名的檢測的開發往往是緩慢和昂貴的,因為它需要大量的專業知識。這限制了系統對快速演變的網絡威脅的適應性。

許多研究使用 ML 和其他 AI 技術來提高已知攻擊的分類準確性、檢測異常網絡流量(因為這可能表明新的攻擊模式偏離了正常網絡流量)以及自動化模型構建。然而,這些系統很少被實際使用。其原因是,入侵檢測給出了具體的挑戰,如缺乏訓練數據、網絡流量變化大、錯誤成本高以及難以進行相關評估。雖然可以收集大量的網絡流量,但這些信息往往是敏感的,只能部分匿名化處理。使用模擬數據是另一種選擇,但它往往不夠真實。然后,必須根據模式是正常還是入侵,或用于確保無攻擊的異常檢測來標記數據以進行監督學習,這通常很難做到。最后,模型需要是透明的,以便研究人員能夠理解檢測限制和特征的含義。

另一項提高網絡安全的措施是在安全審計期間進行滲透測試,以確定潛在的可利用的安全弱點。由于許多網絡的復雜性和其中的大量主機,滲透測試通常是自動化的。一些研究已經調查了如何使用網絡的邏輯模型而不是實際的網絡將 AI 技術用于模擬滲透測試。網絡通常用攻擊圖或樹來表示,描述對手如何利用漏洞闖入系統。描述了模型在表征方式方面的不同之處:1) 攻擊者的不確定性,從抽象的成功和檢測概率到網絡狀態的不確定性,以及 2) 從已知的前后條件到一般感知和觀察的攻擊者行為-結果的服務。此外,通過網絡和主機的正式模型,可以對不同的緩解策略進行假設分析。未來對滲透測試的研究可能會使用攻擊者和防御者之間交互的認知有效模型,例如,深度強化學習來探索可能攻擊的大問題空間。

4 挑戰

正如第3節中的案例所示,在為軍事目的開發和部署的基于人工智能的應用之前,有一些尚未解決的挑戰是很重要的。在本節中,我們將討論我們認為對軍事人工智能最關鍵的挑戰:1)透明度,2)脆弱性,以及3)在有限的訓練數據下的學習。其他重要的,但不太關鍵的,與優化、泛化、架構設計、超參數調整和生產級部署有關的挑戰,在本節中沒有進一步討論。

4.1 透明度

許多應用除了需要高性能外,還需要高透明度、高安全性以及用戶的信任或理解。這種要求在安全關鍵系統、監控系統、自主智能體、醫學和其他類似的應用中很典型。隨著最近人工智能技術的突破,人們對透明度的研究也越來越感興趣,以支持最終用戶在此類應用中的使用與透明度相關的成果。

4.1.1 對透明度的期望

人工智能所需的透明度取決于終端用戶的需求。利普頓描述了透明度可能涉及五種類型的用戶需求:

  • 1.信任-在用戶難以質疑系統建議的情況下。然而,可能不清楚用戶的信任是基于系統的性能或穩定性,相對于用戶的體驗,還是用戶對系統推薦的舒適度。
  • 2.理解之前未知的因果關系,可以用其他方法測試。
  • 3.由于與用戶的能力相比,模型的通用性有限,因此對系統性能的了解受到限制。
  • 4.有關系統建議的一些補充信息。
  • 5.公平性,以避免可能導致某些情況下的不平等待遇的系統性偏見。例如,對信貸申請的評估不應基于個人屬性,如性別或種族,盡管這種屬性可能在整體統計水平上用來區分人口群體。

原則上,有兩種方法可以使人工智能系統透明。首先,某些類型的模型被認為比其他的更容易解釋,例如線性模型、基于規則的系統或決策樹。檢查這些模型可以理解它們的組成和計算。Lipton描述了可解釋性取決于用戶是否能夠預測系統的建議,理解模型參數,以及理解訓練算法。其次,系統可以解釋其建議。這種解釋可以是文字的,也可以是視覺的。例如,通過指出圖像的哪些方面最有助于其分類。Miller 對社會科學研究中如何使用這些知識來設計 AI 系統的進行了的回顧。通常情況下,人們用他們感知到的信念、欲望和意圖來解釋其他智能體的行為。對于人工智能系統來說,信念對應于系統關于情況的信息,欲望對應于系統的目標,而意圖對應于中間狀態。此外,解釋可能包括行動的異常性、使成本或風險最小化的偏好、對預期規范的偏離、事件的回顧性和行動的可控性。主要的發現是:

  • 解釋是針對特定的反事實案例而進行的對比性解釋。因此,解釋的重點是為什么提出特定的建議而不是其他建議。
  • 解釋是有選擇的,并且集中在一兩個可能的原因上,而不是建議的所有原因。
  • 解釋是一種傳遞知識的社會對話和互動。

4.1.2 可解釋模型的實例

貝葉斯規則列表(BRL)是可解釋模型的一個例子。BRL由一系列的if(條件)then(結果)else(替代)語句組成。Letham等人描述了如何為一個高度準確和可解釋的模型生成BRL來估計中風的風險。條件離散化了影響中風風險的高維多變量特征空間,結果描述了預測的中風風險。BRL在預測中風風險方面具有與其他ML方法類似的性能,并且與其他現有評分系統一樣具有可解釋性,但其準確性較低。

基于詞典的分類器是文本分類的另一個可解釋模型的例子。基于詞典的分類器將術語的頻率與每個類別中出現的術語的概率相乘。得分最高的類別被選為預測對象。Clos等人使用一個門控遞歸網絡對詞典進行建模,該網絡同時學習術語和修飾語,如副詞和連詞。受過訓練的詞典是關于論壇中的帖子是支持還是反對死刑以及對商業作品的看法。詞典的表現比其他ML方法更好,同時也是可解釋的。

4.1.3 特征可視化的實例

盡管DNN在許多應用中提供了很高的性能,但它們的子符號計算可能有數百萬個參數,這使得人們很難準確理解輸入特征對系統推薦的貢獻。由于DNN的高性能對許多應用來說是至關重要的,因此人們對如何使它們更容易解釋產生了濃厚的興趣(見一篇評論)。許多用于解釋DNN的算法將DNN處理轉化為原始輸入空間,以便將辨別特征可視化。通常,有兩種通用方法用于特征的可視化,即激活最大化和DNN解釋。

激活最大化會計算哪些輸入特征將最大限度地激活可能的系統建議。對于圖像分類來說,這代表了理想的圖像,它顯示了每個類別的可區分和可識別的特征。然而,由于各類可能使用同一物體的許多方面,而且圖像中的語義信息往往是分散的,所以圖像往往看起來不自然。激活最大化的方法的一些例子是梯度上升法,更好的正則化方法以增加通用性,以及合成首選圖像法。

DNN的解釋是通過強調區分輸入特征來解釋系統建議。在圖像分類中,這種可視化可能會突出顯示支持或反對某個類別的區域,或者僅顯示包含區分特征的區域。計算鑒別特征的一種方法是使用局部梯度或其他變化度量的敏感性分析。然而,敏感性分析的一個問題是,它可能顯示輸入中不存在的判別特征。例如,在圖像分類中,敏感性分析可能會顯示物體被遮擋的部分,而不是可見部分。逐層相關性傳播通過考慮特征存在和模型反應來避免這個問題。

4.1.4 具體應用解釋的實例

與分類不同的是,人工智能規劃是基于動態的領域模型。Fox等人描述如何使用領域模型來解釋為什么行動被執行或不執行,為什么一些行動不能被執行,使未來行動的因果關系,以及重新規劃的需要。

由于公平性對許多人工智能應用來說非常重要,Tan等人描述了如何利用模型蒸餾來檢測黑箱模型的偏差。模型蒸餾法將更大更復雜的模型進行簡化,而沒有明顯的準確性損失。為了提高透明度,他們使用了基于淺層樹的廣義加性模型,對每個參數和兩個參數之間的相互作用進行建模。他們根據黑盒模型的系統建議訓練一個透明模型,并根據實際結果訓練一個透明模型。對兩個模型的推薦差異的假設檢驗體現了黑盒模型引入偏差的情況,然后可以通過比較兩個透明模型來診斷偏差。該系統在犯罪風險、借貸風險和卷入槍擊事件的個人風險方面進行了評估。結果顯示,一個黑盒模型低估了年輕罪犯和白種人的犯罪風險,而高估了美國本土非洲裔犯罪的風險。

4.2 脆弱性

在本節中,我們討論DNN在兩個不同方面的脆弱性。1)對輸入操縱的脆弱性和2)對模型操縱的脆弱性。我們首先看一下對輸入信號的操縱:

4.2.1 對輸入進行對抗性處理

在提供DNN的情況下,人們發現很容易調整輸入信號,從而使分類系統完全失敗。當輸入信號的維度很大時,例如圖片,通常只需對輸入中的每個元素(即像素)進行不易察覺的微小調整,就足以欺騙系統。用同樣的技術來訓練DNN,通常是采用隨機梯度法,通過觀察梯度的符號,你可以很容易地找到每個元素應該朝哪個方向改變,以使分類器錯誤地選擇目標類別或僅僅是錯誤分類。只需幾行代碼,最好的圖像識別系統就會被欺騙,相信一張車輛的圖片是一只狗。下面的圖 1 顯示了操作前后的圖像以及操作前后類的可能性。

上述方法假設有對DNN的完全訪問權,即所謂的白盒攻擊。人們發現,即使是所謂的黑箱攻擊,即你只觀察到系統的輸入和輸出類型,也是可能的。在其中,作者采用從他們想要攻擊的黑盒系統中稀疏采樣所獲得的數據來訓練一個替代網絡。鑒于替代網絡,你可以使用上述的白盒攻擊方法來制作對抗性輸入。一個學習替代網絡的替代方法被提出來,在這個方法中,遺傳算法被用來創建導致系統錯誤分類的攻擊向量。同一作者甚至表明,通常只需修改圖像中的一個像素,盡管常常是可察覺的,就能實現成功的攻擊。

圖 1:從小型貨車到西伯利亞雪橇犬。 原始圖像和操縱(對抗性制作)圖像之間的絕對差異(放大 20 倍)顯示在右側。 對抗性示例(中心)是使用 Kurakin 的基本迭代方法(BIM)生成的。

4.2.2 利用預訓練 DNN 中的隱藏后門

當設計一個DNN,但只能獲得少量的訓練數據時,通常會使用預訓練的模型來達到良好的性能。這個概念被稱為遷移學習,一個常見的應用是采用在大量數據上訓練過的模型,根據具體問題替換和定制網絡中的最后幾層,然后在最后階段(有時甚至是整個系統)利用可用的訓練數據微調參數。目前已經有大量的預訓練模型可以從互聯網上下載。那么一個相關的問題是:"我們怎么知道那些上傳模型的人沒有壞心眼?"。作者在識別美國交通標志的模型中插入后門,就考慮了這種類型的漏洞。例如,一個貼紙被訓練為屬于停止標志以外的類別。然后他們表明,當使用后門(即在交通標志上放置一個貼紙)時,基于美國交通標志網絡的識別瑞典交通標志的系統會有負面的反應(大大損害了瑞典交通標志系統的分類準確性)。

4.2.3 防御方法

減少DNN對輸入信號操縱的脆弱性的一種方法是在模型的訓練過程中明確包括被操縱/對抗的例子。也就是說,除了原始訓練數據外,還產生了對抗性例子,并用于模型的訓練。

另一種方法是使用一個叫做防御蒸餾的概念。簡而言之,該方法試圖降低輸出信號只指出真實類別的要求,并迫使其他類別的概率為零。這分兩步完成。第一步是對DNN進行常規訓練。在第二步,將第一個神經元網絡的輸出(類別概率)用作新的類別標簽,并使用新的(軟)類別標簽訓練一個新的系統(具有相同的架構)。這已被證明可以減少漏洞,因為你沒有把DNN與訓練數據貼得太緊,并保留了一些合理的類間關系。

其他防御方法,例如特征壓縮技術,例如均值或中值濾波或非線性像素表示,例如單熱或溫度計編碼。

不幸的是,所描述的方法都不能完全解決漏洞問題,尤其是如果攻擊者對模型和防御方法有充分的了解的話。

4.3 數據

在軍事背景下開發基于ML的應用是具有挑戰性的,因為軍事組織、訓練設施、平臺、傳感器網絡、武器等的數據收集應用最初不是為ML目的設計的。因此,在這個領域,往往很難找到真實世界的、高質量的、足夠大的數據集,可以用來學習和深入理解的。在本節中,我們將探討即使在有限的訓練數據中也可以用來建立ML應用的技術。

4.3.1 遷移學習

遷移學習(也在第4.2.2節中提到)是一種技術,通常在數據集較小和計算資源有限時使用。這個想法是在開發針對其他類似任務的新模型時,重復使用通常由 DNN 表示的預訓練模型的參數。至少有兩種方法可用于DL應用中的遷移學習:

  • 重新學習輸出層:使用這種方法,預先訓練好的模型的最后一層被替換成新的輸出層,與新任務的預期輸出相匹配。在訓練過程中,只有新輸出層的權重被更新,其他的都是固定的。
  • 微調整個模型:這種方法類似于第一種方法,但在這種情況下,可能會更新整個 DNN 的權重。 這種方法通常需要更多的訓練數據。

事實證明,遷移學習也可以提高模型的泛化能力。然而,隨著源任務和目標任務之間距離的增加,遷移學習的積極作用往往會減少。

4.3.2 生成性對抗網絡

生成性對抗網絡(GANs)是由Goodfellow等人發明的,是一種生成模型,可用于半監督學習,其中將一小組標記的數據與一大組未標記的數據相結合以提高模型的性能。基本的GAN實現由兩個DNN組成,分別代表一個生成器和一個判別器。生成器被訓練成產生假數據,而判別器被訓練成將數據分辨為真實或虛假。當這兩個網絡同時被訓練時,一個網絡的改進也會導致另一個網絡的改進,直到最后達到一個平衡。在半監督學習中,生成器的主要目標是產生未標記的數據,用于提高最終模型的整體性能。除了半監督學習之外,GANs還被用于:

  • 重建:填補部分被遮擋的圖像或對象的空白部分。
  • 超分辨率:將圖像從低分辨率轉換為高分辨率。
  • 磁帶到圖像的轉換:將圖像從冬天轉換為夏天,從夜晚轉換為白天,等等。這項技術的一個軍事應用是可以將夜視圖像轉換為日光圖像。

4.3.3 建模和仿真

建模和仿真已被軍隊廣泛用于培訓、決策支持和研究等。因此,有很多經過長期驗證的模型,也有可能被用于生成ML應用的合成數據。例如,飛行模擬器可以用來生成置于不同環境中飛機的合成圖像。在這種情況下,標簽是自動的,因為在生成合成圖像之前,飛機的類型是已知的。然而,不足為奇的是,在將模型應用于真實世界的圖像時,使用合成圖像可能會導致性能不佳。目前正在探索的一種方法是采用GANs增強合成圖像,使其具有照片般的真實性。這種方法已經得到成功的應用。

5 結論

人工智能最近的突破正在逐漸達到可以用于軍事應用的地步。 該論文描述了在監視、水下魚雷戰和網絡安全中使用人工智能的一些可能性。 其他潛在應用包括使用半自動駕駛車輛和傳感器系統進行偵察、在具有長時間要求的防空系統中進行威脅評估、新興模式的情報分析、指揮和控制系統以及教育和培訓。 然而,人工智能的軍事應用需要考慮以下方面的挑戰:

  • 確保模型性能符合軍事要求的透明度。
  • 脆弱性可能會導致系統性能大幅度降低。
  • ML的訓練數據不足。

專注于人工智能的透明度、可解釋性和可解釋性問題的研究人員已經取得了許多進展。這些進展中的許多部分也都可能被用于軍事人工智能應用中。然而,需要進行更徹底的需求分析以了解如何利用這些研究成果。軍事需求在風險、數據質量、法律要求等方面與一般情況相比非常不同,有些類型的透明度甚至可能不適用。此外,還需要對如何利用社會科學研究來提高人工智能的可解釋性進行更多研究。未來的研究還應該包括如何充分利用在視覺分析研究領域中開發地豐富的可視化技術。

由于目前還沒有解決脆弱性問題的有效方案,因此在監測這一研究領域不斷尋找有希望的解決方案非常重要。然而,在這種解決方案出現之前,有必要盡量減少外部對模型和防御技術的訪問。否則,對手可能會試圖利用這些漏洞來為自己謀利。

最后,遷移學習使其有可能將預先訓練好的模型應用于訓練數據和計算資源都有限的軍事應用。GAN是另一種有很前途的技術,它能夠采用標記的和未標記的數據進行學習(半監督學習)。GAN也可以與仿真結合使用,以提高合成的訓練數據的真實性。

付費5元查看完整內容
北京阿比特科技有限公司